论文部分内容阅读
MTL-代数的稳定化子及两类逻辑算子研究
【机 构】
:
西北大学
【出 处】
:
西北大学
【发表日期】
:
2018年01期
其他文献
本学位论文研究了量子混合态密度矩阵的可分性以及正算子的方块积.主要目的是寻找量子混合态密度矩阵可分的必要条件和研究正算子方块积的代数性质.全文共分三章: 第一章,介绍
本文利用上下解方法,Schauder不动点定理和逼近理论,讨论了两类非线性项可变号的二阶奇异边值问题,给出了关于正解存在性的新结论.本文分为三章. 第一章为绪论,阐述常微分方程
本文对两两NQD样本下半参数回归模型估计的相合性进行了研究。在1986年,Engle等人从气候条件对电力需求关系提出了如下的半参数模型:yi=xiβ+g(ti)+eii=1,2……此后,对于半参
研究泛函微分方程的周期解与概周期解问题,不仅有很大的应用的价值,而且丰富了泛函微分方程理论体系。本文对中立型泛函微分方程的周期解与概周期解问题作了一些研究,主要如下:
本文主要对Ricci曲率非负的完备开流形的拓扑结构进行研究,利用比较定理和Riemann流形上距离函数的临界点理论得到了有关其拓扑结构的一些结果.具体地说,我们证明了定理Ⅰ设M为
学位
有限单元法(Finite Element Method,FEM)是当今最成熟、应用最广泛的一种数值分析方法。随着问题求解规模的增加及并行计算机硬件环境的快速发展,有限元并行计算及其网格生成技术
本文对试验设计问题进行了研究。文章主要分为三个部分: 第一章,考虑多响应情形下含有异常观测值的响应曲面设计问题,导出了衡量设计稳健性的准则。将设计限制在中心组合设计