论文部分内容阅读
富氧燃烧技术作为具有重要应用前景的CO2捕集、封存与利用技术之一,在世界范围内引起了广泛研究。本文选取经济性上更具优势的分级增压富氧燃烧系统基于过程模拟软件Aspen Plus进行建模,从系统的能耗分析、压力评价、集成优化、水耗分析等方面对分级增压富氧燃烧系统进行评价。首先建立分级增压富氧燃烧系统全流程模型,在整体操作压力提升到12.5bar的工况下,系统的毛效率提高到45.83%(HHV)和47.67%(LHV)。此外,采用的空分系统(air separation unit,ASU)和CO2压缩纯化系统(CO2 compression and purification unit,CPU)改善了整体性能。对于脱除SOx和NOx采用的直接接触式冷却塔(direct contact column,DCC)装置,在净化烟气的同时回收大量热量,进一步提高系统效率。因此,分级增压富氧燃烧系统实现了35.71%(HHV)或37.15%(LHV)的净效率,相对于常压富氧燃烧系统提升了7.41%(HHV)和7.51%(LHV)。继而在分级增压富氧燃烧系统模型的基础上,进行系统操作压力对分级增压富氧燃烧系统整体性能影响的灵敏度分析。随着操作压力的增加,在更高的露点情况下烟气中可以回收更多可用的潜在焓。虽然ASU压缩在较高压力下消耗更多能量,但CPU需要较少的辅助能量。系统在12.5bar的工作压力附近可以实现最大效率。此外基于夹点分析和热集成方法分析分级增压富氧燃烧系统10条冷热物流,发现在10℃的最小温差下,全系统最大热量回收值超过240MW,系统净发电效率值增加了0.63%。最后,对分级增压富氧燃烧系统运行水耗与生命周期水耗进行分析。从六个耗水单元的取水量和耗水量分析可以看出,水的使用主要在蒸汽循环冷却部分。从燃料供应、基础设施、系统运行和化学品生产四个方面来评价系统生命周期水耗,分级增压富氧燃烧系统的生命周期取水量为3225.04 L/MWh,生命周期耗水量2165.63 L/MWh。在整个生命周期,系统运行阶段所占的比例最大,按照取水量计算系统运行阶段取水量达到整个生命周期取水量的87.58%。