论文部分内容阅读
谷氨酰胺转氨酶(protein-glutamine: amine γ-glutamyltransferase,简称TGase, EC2.3.2.13)是一种催化酰基转移反应的酶,它能催化谷氨酰胺残基的γ-羧酰胺基(氨基受体)和赖氨酸残基的ε-氨基或其它伯胺基(氨基供体)之间的酰基转移反应。TGase的这种催化作用改变了蛋白质的构象,实现了蛋白质分子内、分子间的交联,从而改善了蛋白质的功能性质。TGase广泛分布于自然界,但植物来源TGase的分离纯化困难、得率较低,限制了研究者对植物来源TGase的研究,将其进行异源表达是解决这一问题的有效途径。本论文分别利用大肠杆菌、毕赤酵母表达系统表达黏玉米来源TGase(TGZ),同时利用重叠区扩增基因拼接法对tgz基因进行密码子优化,从而达到TGZ的高效表达,并将纯化后TGZ与微生物来源TGase(MTG)的功能特性进行了比较研究。为了研究tgz基因中叶绿体转移肽对TGZ可溶性表达和产量的影响,分别将tgz和不含叶绿体转移肽的tgz基因转入大肠杆菌感受态细胞,诱导发现两种表达产物均以包涵体的形式存在,且表达量无明显差异,说明叶绿体转移肽对TGZ的可溶性表达和产量无显著影响。对重组TGZ的表达条件进行优化,结果表明:含有tgz基因的重组ArcticExpress E. coli菌株,于37℃在LB培养基中培养至OD600约为0.4时,加入0.2mmol/L IPTG,于16℃诱导16h后获得TGZ的最大表达。诱导表达后,用8mol/L尿素溶解包涵体,复性后用亲和层析法进行分离纯化,纯化后TGZ活性为0.34U/mg,产量达到1.41mg/L。为了获得TGZ的可溶性表达,将tgz基因在真核表达宿主毕赤酵母中进行诱导表达。首先在不改变TGZ氨基酸序列的基础上,根据毕赤酵母密码子的偏好性,对tgz基因进行密码子优化。由于tgz基因含有15个重复序列,且重复序列个数对TGZ活性无影响,为了正确合成tgz基因,我们只保留一个重复序列,并把tgz分为A、B和C三个亚片段,利用重叠区扩增基因拼接法对优化后tgz基因(tgzo)进行合成。与tgz基因相比,tgzo基因共改变了289个核苷酸,涉及239个氨基酸,G+C含量从53.1%下降至40.3%,与毕赤酵母的G+C含量相符。同时为了便于后续的分离纯化,设计的tgzo基因带有组氨酸标签。将tgz和tgzo基因分别与载体pPIC9K连接,构建重组表达载体pPIC9K-tgz和pPIC9K-tgzo。将两种重组载体单酶切后通过电击转化入毕赤酵母GS115感受态细胞,经表型、G418抗性及菌落PCR法筛选出His+Mut+表型的高拷贝重组菌株G-tgz和G-tgzo。将两种重组菌株分别进行甲醇诱导表达,其中G-tgz通过凝胶过滤层析和离子交换树脂进行分离纯化,纯化后TGZ的比活达到0.32U/mg,产量达到1.44mg/L。G-tgzo则通过亲和层析法进行分离纯化,纯化后TGZo的比活达到0.89U/mg,产量达到4.4mg/L。密码子优化后,TGZo的酶活分别是大肠杆菌表达TGZ的2.6倍,毕赤酵母表达TGZ的2.8倍,产量分别是大肠杆菌和毕赤酵母表达TGZ的3.1倍,所以通过密码子优化设计,成功的提高了TGZ的活性和产量。为了提高重组子G-tgzo的表达量,本实验对诱导培养基、甲醇浓度、诱导时间、装液量、诱导阶段pH、诱导前菌体生物量、油酸及PMT1进行了单因素优化,确定了各因素的最佳值。采用Plackett-Burman设计及响应面分析法确定了最佳的表达条件:重组子G-tgzo用37mL pH6.5的改良BMMY培养基(含有0.006%PMT1和0.07%油酸)重悬至OD600为2时,于28℃诱导96h,每24h时补加100%甲醇,使其终浓度为1.31%,同时补加0.006%PMT1和0.07%油酸。在该条件下TGZo的活性达到1078mU/mL,比优化前提高了1.8倍。利用亲和层析法分离纯化TGZo,产量达到7.6mg/L,是优化前的1.73倍。采用荧光测定法对不同来源TGase的酶学性质进行研究。结果表明,重组酶对酪蛋白的亲和力低于MTG,TGZo的最适反应温度为37℃,低于TGZe和MTG的45℃,但是重组酶的温度稳定范围高于MTG,为4~60℃。重组酶的最适反应pH为8.0,高于MTG的7.0,且在偏碱性条件下重组酶的稳定性更好。不同金属离子对酶活性有一定的影响,其中低浓度的Ca2+对重组酶的促进作用最强。两种酶对不同底物蛋白的交联作用研究表明,TGZo和MTG对酪蛋白和大豆分离蛋白有显著的交联作用,其中TGZo对大豆分离蛋白的交联作用高于MTG,但是TGZo对乳清蛋白无交联作用。将重组TGZo用于酸奶发酵,发现它能提高酸奶的质构参数、表观黏度,降低酸奶的乳清析出量,但是TGZo的酶学性质导致了其对酸奶品质的改善作用低于MTG。同时研究了TGZo对不同脂肪含量酸奶样品的改善作用,发现脂肪对酶的催化作用影响不大。这些结果为植物来源TGase在食品工业中的应用奠定了基础。