四种多糖对色氨酸-P-1肠吸收和致突变性影响研究

来源 :南京农业大学 | 被引量 : 0次 | 上传用户:opp2781062
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
3-氨基-1,4-二甲基-5H-吡啶并[4,3-b]吲哚(中文简称色氨酸-P-1,英文简称Tryptophan-P-1),是一种广泛存在于肉制品中的杂环芳胺类化合物,被国际癌症研究机构(IARC)认定为2B类致癌物,具有很强的致癌性和致突变性。色氨酸-P-1的减控对于肉制品的安全性极为重要。现有的色氨酸-P-1减控的方法主要包括:控制烹调时间/温度、加入其他物质减少色氨酸-P-1生成,使用色氨酸-P-1致突变性抑制剂。然而,这些减控方法在实际应用受到一定限制:在家庭膳食制作中难于精确控制烹调时间/温度,加入其他物质可能带来不受欢迎的风味,致突变性抑制剂自身具有其他生物活性。因此,寻找一种新的色氨酸-P-1减控方法对于肉制品质量控制具有十分重要的意义。本研究对一种新的色氨酸-P-1减控方法,即减少色氨酸-P-1的吸收,进行了系统的科学验证。选用阿拉伯胶、卡拉胶、黄原胶和羧甲基纤维素钠(CMC)四种多糖作为潜在的色氨酸-P-1的吸收和致突变性抑制剂,分别研究了这四种多糖对色氨酸-P-1的体内外吸收、致突变性的影响,并对其影响机制进行了探讨。本研究主要包括以下四部分:1.四种多糖对色氨酸-P-1体外吸收的影响采用肠吸收模拟模型(MDCK-MDR1细胞单层模型和肠粘膜离体模型)研究色氨酸-P-1的体外吸收特性,并研究低浓度下(<1%,w/v)阿拉伯胶、羧甲基纤维素钠、黄原胶和卡拉胶四种多糖对色氨酸-P-1肠吸收的影响。将色氨酸-P-1(20μM)单独或与多糖(10mM、20μM或2μM,以单体计)共同经肠吸收模型转运,分别在120min(MDCK-MDR1细胞单层模型)或90min(肠粘膜离体模型)内测定各时间点吸收池中色氨酸-P-1的浓度,计算分析色氨酸-P-1的吸收量、吸收参数(表观渗透系数Papp)和多糖对色氨酸-P-1肠吸收的抑制率。结果表明:(1)不同多糖对色氨酸-P-1肠吸收的影响不同,阿拉伯胶对色氨酸-P-1肠吸收无显著影响,黄原胶、卡拉胶和CMC都能显著抑制色氨酸-P-1的肠吸收。(2)黄原胶、卡拉胶和CMC对色氨酸-P-1肠吸收抑制程度与浓度相关,10mM多糖对色氨酸-P-1肠吸收抑制程度最高。在MDCK-MDR1细胞单层模型上,10mM的黄原胶、卡拉胶、CMC分别降低了 49.5%、72.9%、31.5%的色氨酸-P-1肠吸收;在肠粘膜模型上,10mM的黄原胶、卡拉胶、CMC分别降低了 83.4%、64.1%、64.6%的色氨酸-P-1肠吸收。(3)在两个模型上都存在不同浓度下多糖吸收抑制程度相近的现象。2.四种多糖对色氨酸-P-1体内吸收的影响采用健康小鼠作为动物模型,灌胃给予受试物。动物分成5组:10mg/kg色氨酸-P-1单独给药组、10mg/kg色氨酸-P-1+125mg/kg多糖共同给药组。分别在灌胃后20min、40min、1h、1.5h、2h、3h、5h、8h、18h 和 24h 时刻取血,内标 HPLC 法测定色氨酸-P-1的浓度。采用药物动力学软件DAS2.0分析,根据统计矩模型进行计算各组色氨酸-P-1药代动力学参数。结果表明,阿拉伯胶对色氨酸-P-1的吸收无影响。黄原胶、卡拉胶和CMC显著降低了色氨酸-P-1的吸收量(AUC(0-t)、AUC(0-∞)和吸收程度(Cmax),但对色氨酸-P-1的吸收速率和消除速率没有明显影响。以AUC(0-t)为计算依据,三种多糖分别降低了色氨酸-P-1在小鼠45.5%、64.8%、41.5%的吸收。3.四种多糖对色氨酸-P-1致突变性的影响选用TA98为实验株,采用Ames实验研究阿拉伯胶、黄原胶、卡拉胶和CMC四种多糖对色氨酸-P-1致突变性影响研究,考察多糖种类因素和浓度因素。色氨酸-P-1的浓度为20nmol/plate,多糖的浓度以色氨酸-P-1:多糖表示,分别为1:0.1、1:1、1:5、1:25、1:50、1:100、1:500。结果表明:(1)四种多糖在Ames实验中对TA98无致突变性;(2)不同种类多糖对色氨酸-P-1致突变性的影响不同,阿拉伯胶对色氨酸-P-1致突变性无显著影响,黄原胶、卡拉胶和CMC对色氨酸-P-1致突变性有抑制作用;(3)多糖对色氨酸-P-1致突变性的抑制程度与多糖浓度有关,黄原胶、卡拉胶和CMC对色氨酸-P-1致突变性抑制程度都随着浓度上升而增强,但存在不同浓度下多糖抑制致突变性程度相近的现象。在10μmol/plate浓度(色氨酸-P-1:多糖=1:500)下,三种多糖对20nmol/plate色氨酸-P-1致突变性的抑制率分别为94.0%、95.3%、88.0%,色氨酸-P-1的致突变基本被完全抑制。在Ames实验中,还进行了初步的机制研究:(1)通过设置代谢系统活化条件(S9+)、非代谢系统活化条件(S9-)的平行实验来考察多糖对色氨酸-P-1致突变性影响是否与代谢系统活化有关;(2)通过不同的实验方式研究多糖、色氨酸-P-1、实验菌TA98两两之间是否存在相互作用。结果表明,多糖抑制色氨酸-P-1致突变性,与色氨酸-P-1和多糖的相互作用有关,与代谢酶系统无关。4.四种多糖与色氨酸-P-1的相互作用研究采用等温滴定量热法和体外结合实验来研究色氨酸-P-1和多糖的相互作用。等温滴定量热法结合曲线表明,阿拉伯胶和色氨酸-P-1间无明显作用,黄原胶、卡拉胶和CMC三种多糖分别与色氨酸-P-1存在相互作用。经热力学参数分析,色氨酸-P-1与黄原胶相互作用主要由熵变(ΔS)驱动,色氨酸-P-1与卡拉胶、CMC相互作用主要由焓变(ΔH)驱动。体外结合实验中,考察因素包括温度因素(25℃、37℃)和浓度比因素(多糖:色氨酸-P-1 分别为 0.1:1、0.2:1、0.5:1、1:1、10:1、500:1)。结果表明,(1)温度(25℃、37℃)对四种多糖与色氨酸-P-1的结合比例没有显著影响;(2)浓度比因素对四种多糖与色氨酸-P-1结合比例有不同的影响。阿拉伯胶和黄原胶与色氨酸-P-1的结合比例不受多糖/色氨酸-P-1值变化而出现显著变化。与阿拉伯胶结合的色氨酸-P-1比例均<5%,与黄原胶结合的色氨酸-P-1比例为77.45%-85.50%。CMC和卡拉胶与色氨酸-P-1的结合比例随着多糖值浓度增加都呈现先上升后稳定的情况。当CMC/色氨酸-P-1值从1:1变到500:1时,CMC与色氨酸-P-1的结合比例相对稳定,在79.72%-84.16%范围内。当卡拉胶/色氨酸-P-1值从10:1变到500:1时,卡拉胶与色氨酸-P-1的结合比例相对稳定,在81.9%-86.8%范围内。总之,本研究发现,在低浓度(<1%,w/v)下,阿拉伯胶对杂环芳胺色氨酸-P-1的肠吸收和致突变性没有明显影响;黄原胶、卡拉胶和CMC降低了色氨酸-P-1在细胞单层、肠粘膜组织、小鼠机体三个层次上的吸收,抑制了色氨酸-P-1对TA98的致突变性,吸收减少和致突变性抑制作用程度与多糖浓度相关,其作用机制源于色氨酸-P-1和多糖的相互作用。本研究为使用多糖减少杂环芳胺的吸收和致突变性这一减控方法,提供了一定程度的理论指导。
其他文献
学位
大豆[Glycine max(L.)Merr]广泛栽培于世界各地,是重要的粮食作物之一,同时也是重要的植物蛋白质来源及食用油的原料。大豆种植过程中经常因为病害导致产量损失,品质降低,从而导致经济损失。其中大豆疫霉根腐病(Phytophthora root rot,简称PRR)是最严重的病害之一。大豆疫霉根腐病是由土传卵菌大豆疫霉菌(Phytophthora sojae Kaufmann&Gerde
抗体是由脊椎动物产生的一种能高亲和力、特异性识别抗原的多功能分子。在植物保护领域,抗体即可作为农药残留免疫分析的生物识别分子,又可用于农药的分子模拟,替代其与靶标昆虫受体结合,甚至引发生物学效应。本研究从抗体的生物识别和分子模拟两大功能着手,开展了多种拟除虫菊酯农药共性代谢产物3-苯氧基苯甲酸(3-PBA)免疫分析技术研究。同时采用抗独特型抗体技术对苏云金芽孢杆菌(Bt)Cry2Aa毒素进行分子模
现代农业生产中,大量施用化肥以达到作物高产的施肥方式不仅引起了一系列的环境问题还导致了耕地质量的下降。为了维持农业可持续性发展,通过养分优化管理减少投入、提高效率和土壤的可持续性生产能力已成为农业生产的迫切需求。养分优化管理在使作物达到高产和高效的同时,也会对土壤微生物产生直接或间接的影响。土壤微生物在驱动土壤养分循环、作物养分供应及土壤培肥的过程中发挥了决定性的作用,了解作物高产高效下的微生物群
植物进化出了细胞表面的免疫受体蛋白(Pattern recognition receptor,PRR)和胞内免疫受体蛋白(Nucleotide-binding leucine-rich repeat receptor,NLR)来识别病原效应因子并进而启动先天免疫系统来抵御病原物的侵染。NLR类受体蛋白作为最大的一类抗性蛋白,其结构主要包括N端结构域、核酸结合结构域(Nucleotide-bindi
解淀粉芽孢杆菌SQR9(Bacillus amyloliquefaciens SQR9,SQR9)是一株从健康黄瓜根际筛选到的植物根际促生菌,被用于防治由尖孢镰刀菌所引起的黄瓜枯萎病。SQR9的处理可显著地促进植物生长,协助植物抵抗盐胁迫,并对多种土传病害存在抗性。对SQR9生防功能的研究集中于根际竞争性定殖与产生抗生素等直接抑制病原菌的机制。并且植物根际促生菌(Plant growth-prom
在耕地资源紧缺的形势下,通过施用化肥提高作物单产,是减缓粮食需求压力、保障粮食安全的重要途径。然而,农户为了达到作物高产目的而过量施用化肥,导致了当前高投入、低效率以及高环境代价的粮食生产现状。因此,探索优化施肥下作物稳产增效的潜力与土壤的微生物学特征,进而构建土壤-微生物-作物三位一体的养分优化管理模式,是实现农业高产高效可持续生产的迫切需求。本研究通过农户调研结合文献整合分析,同时进行三年的田
土壤盐渍化是一个全球性问题,对生态环境和农业生产带来了巨大的负面影响。盐胁迫导致植物生长发育迟缓,由此引发多种生理反应。植物形成各种生理、细胞和遗传机制使其在高盐胁迫下得以生存,其中包括SOS(Salt overly sensitive)系统、植物激素、抗氧化防护系统、渗透调节物质和膜脂信号等。植物磷脂酶D(Phospholipase D,PLD)是磷脂代谢和应答非生物胁迫的重要酶类。PLD及其水
植物为了适应土壤中不同且变化的营养状况而长期进化产生出灵活和复杂的调控机制。由于土壤环境中矿质营养使用效率直接影响作物的产量和品质,因此对植物矿质元素吸收、转运、分配和利用的稳态分子调控机制需要从多角度深度解析。目前研究主要以转录因子为中心的转录调控为主,而对可变剪接介导的转录后水平调控的功能基因组研究比较欠缺,甚至被低估。可变剪接不仅丰富了蛋白质多样性,而且可以通过转录后调控机制调控基因表达,从
褐飞虱(Nilaparvata lugens Stal)是危害水稻的主要害虫之一,在亚洲稻区频繁爆发。除了直接刺吸植物茎秆汲取营养、产卵为害外,褐飞虱导致的水稻病毒传播更造成了进一步为害。长期以来,很多种类的杀虫剂被用于防治褐飞虱,包括有机磷类、氨基甲酸酯类、苯吡唑类、噻嗪酮、吡蚜酮和新烟碱类杀虫剂。然而,褐飞虱对众多杀虫剂产生了一定水平抗性,使得化学防治效果受到严重威胁。醚菊酯是一种非酯键的拟除