论文部分内容阅读
淀粉是多糖化合物,属于天然高分子材料,来源十分广泛,淀粉在纺织、造纸、石油工业等领域有着广阔的应用。20世纪60年代以来,随着地球石油资源的日益减少,因塑料白色污染导致环境恶化的逐渐加重,可生物降解塑料备受国内外研究的青睐。由于淀粉具有良好的生物降解性能,作为生物降解塑料的生物质研究取得了一定成果。然而,天然淀粉本身固有的多羟基结构使其极性较强,导致淀粉与非极性或弱极性的合成树脂互容性差,限制了其在生物降解塑料中的应用。目前解决这一问题主要采取对淀粉进行疏水化处理。改性处理的方法主要有物理改性、化学改性、偶联改性等方法。其中,物理改性:采用超声振荡能有效的使淀粉颗粒微细化,比表面积增大,但疏水效果不佳;化学改性:通常使用各种化学试剂取代羟基,取代度低,疏水效果不显著,且成本高后处理复杂。偶联改性:工艺简单,无污染,疏水效果显著,但处理后的淀粉粒径大且不均匀,影响其与合成树脂间的相容性。本课题将物理与偶联改性有机相结合,建立了一种复合改性方法新技术,多法联用,优势互补,获得了高疏水性淀粉。分别将高疏水性淀粉添加到聚氯乙烯(PVC)和聚乙烯醇(PVA)中,制备了可生物降解的PVC塑料和PVA薄膜。对高疏水性淀粉、可生物降解的PVC塑料和PVA薄膜进行了结构表征和性能测试。高疏水性淀粉的制备及性能测试:首先将玉米淀粉进行超声细化处理,以改性淀粉的疏水性能为指标,考查了改性时间、改性温度、搅拌速度、偶联剂用量和疏水剂用量对改性淀粉疏水性能的影响。确定了最佳改性条件,接触角测试显示:改性后淀粉的接触角明显增大(141~143°),其中,偶联剂酞酸四丁酯/疏水剂硬脂酸较偶联剂硅烷/疏水剂花生油对淀粉的疏水改性效果更好。红外分析结果显示:超声振荡后,淀粉中O-H的伸缩振动峰由3423cm-1变为3436cm-1,说明超声振荡可使O-H间氢键断裂而游离。疏水改性后淀粉中O-H的伸缩振动峰又降为3411cm-1,这是淀粉表面羟基与偶联剂和疏水剂作用的结果。扫描电镜分析显示:超声振荡后淀粉粒径显著变小,且分散均匀,团聚现象减少,表面附着均匀的斑点状改性物质,表明改性剂已包覆在淀粉颗粒上。淀粉基PVC塑料的制备及性能测试:分别将自制改性淀粉以不同比例(20%、40%、60%)加入到同一配方的PVC原料中,共混后制备降解塑料片材,抗拉伸实验结果显示:改性淀粉含量20~60%,抗拉强度25.49MPa~17.99MPa,可满足各种淀粉基塑料产品的性能。淀粉基PVA薄膜的制备及性能测试:首先将PVA与水加热溶解完全,然后一次添加偶联剂、增塑剂及疏水改性的淀粉,搅拌混合均匀,静止脱泡,流延制膜。以沉降率和抗拉伸强度为主要性能指标,以透光率为参考指标,综合考虑选择最佳制备条件。生物降解率测试:采用土埋法和培菌液法对淀粉基PVC塑料片材和淀粉基PVA薄膜的生物降解能力进行了初步测试,实验结果显示:淀粉基PVC塑料及PVA薄膜都表现出了良好的生物降解性能。其中,淀粉基PVC塑料在经过4个月土埋实验后,生物降解率达到61.8%,采用培菌液法40天后,生物降解率可以达到54%,淀粉基PVA薄膜采用培菌液法降解40天后,生物降解率可以达到68%。本研究建立了一种制备高疏水性淀粉的新方法。该方法工艺简单、绿色环保,成本低,有望工业化生产,推广应用前景看好。所制高疏水性淀粉可分别作为PVC和PVA塑料的良好生物质,用其制备的淀粉基PVC塑料和PVA塑料具有良好的物理性能和生物降解性能。