论文部分内容阅读
伴随着经济社会的快速发展,人们的交通出行压力也日益增大,交通拥堵,道路出行障碍等诸多问题矛盾越来越尖锐。在这样的大背景下,为缓解城市交通压力,方便城市车辆交通出行的智能车联网系统整体解决方案由此诞生。本文主要是对基于IEEE802.11p协议的车联网基带通信平台进行理论研究分析和实际硬件设计,这其中涵盖了相关技术原理研究,硬件设计,FPGA实现,仿真分析,在线测试,以及最终的结果分析,比较系统完整的再现了车联网基带通信系统设计开发实现全过程。主要内容如下:首先,引入说明车联网系统的的整体架构,主要分为两大块,即通信云平台网络和车联网平台。在这之后着重说明介绍整个车联网的架构核心,即车联网平台中的OBU(车载智能终端)和RSU(路边智能终端),给出两者实现信息交互的原理示意图,初步指导设计。其次,开始引出车联网物理层基带通信所要遵循的协议以及采用的关键技术,即IEEE802.11p协议和OFDM调制技术。IEEE802.11p协议具体介绍了发展历程,信道及发射功率环境,物理层帧结构,关键参数,同IEEE802.11a协议的横向对比等方面,比较完整的对该协议进行了解读。OFDM调制技术则是从技术发展,技术原理,优缺点,调制实现架构等方面对其进行了深入的分析解读。结合对物理层帧结构的分析,调制方式的理解,进一步指导之后基带收发端的硬件设计。之后,便是本文的核心内容,即车联网基带通信的整体硬件设计及FPGA实现。主要分为两大模块,发射机部分和接收机部分。发射机部分主要处理流程包括扰码,卷积编码,交织,调制,插入导频,IFFT,循环前缀的添加等模块,接收机主要包括帧同步,符号同步,载波同步,剩余相位同步,信道估计与均衡,解调,解交织,Viterbi译码,解扰模块等。各个模块从运作机理入手,从原理分析,再到硬件框图设计,代码实现,最终给出Modelsim仿真波形图。需要注意的是,由于帧结构的原因,在发射机模块中,Signal域和Data域数据要区别处理。最后,对发射机及接收机硬件设计进行上板在线测试,采用ChipScope Pro进行在线观测,结合对比Modelsim仿真图,进行结果的比对分析。