【摘 要】
:
图像作为人类日常生活中重要的信息传播载体,其质量直接决定着能否及时准确地从中获取有效的信息。在图像采集过程中往往会由于设备抖动、拍摄物体处于运动状态等原因导致图像产生模糊,造成图像信息的丢失,因此图像去模糊作为图像处理领域的一个重要研究方向,在交通、天文以及军事领域都有着广泛的应用。近年来,随着卷积神经网络和深度学习在图像处理领域的快速发展,其高效快速的处理方法逐渐受到人们的关注,并且对于特定模糊
论文部分内容阅读
图像作为人类日常生活中重要的信息传播载体,其质量直接决定着能否及时准确地从中获取有效的信息。在图像采集过程中往往会由于设备抖动、拍摄物体处于运动状态等原因导致图像产生模糊,造成图像信息的丢失,因此图像去模糊作为图像处理领域的一个重要研究方向,在交通、天文以及军事领域都有着广泛的应用。近年来,随着卷积神经网络和深度学习在图像处理领域的快速发展,其高效快速的处理方法逐渐受到人们的关注,并且对于特定模糊问题有着更高的精确性,针对以上问题,依据卷积神经网络主要做了如下几方面的研究:1、针对运动模糊图像场景形成复杂、难以处理等问题,以图像高斯金字塔中的多尺度图像为依据,结合多尺度图像信息提取和多尺度特征提取建立了端到端的去模糊模型,以扩大感受野为目的设计了空洞卷积模块并在较少参数量的基础上拓宽模型深度,加强图像之间的映射过程。实验结果表明在保证去模糊效果的前提下运行速度更快,能够处理不同尺寸下的复杂运动模糊图像。2、针对神经网络模型无法准确建立图像模糊形成过程的问题,依据卷积神经网络能够在未经过任何学习过程之前就能够获取图像的统计信息这一论据,分别构造能够反映图像先验信息和模糊核先验信息的生成网络。并通过输入噪声对图像构成进行约束优化,确保网络模型能够在不依赖大量训练数据集的基础上正确提取图像先验信息并生成清晰图像。3、针对传统算法运算复杂、迭代耗时等问题,依据最大后验法对传统去模糊问题进行了具体分析,利用多尺度先验作为预处理过程,结合模糊图像和模糊核之间的关系推导出以残差网络为主体的神经网络生成器和优化器,并制作相关数据集将模糊图像结合模糊核进行训练,在提升训练速度的同时也取得了较好的复原效果。
其他文献
随着我国经济的快速发展和城市化进程的加快,空气污染物排放量增加,空气质量问题日益严重。近年来雾霾天气的频发,严重影响人们的交通出行、日常生活和身体健康,PM2.5的污染问题引起了公众和政府的广泛关注,对细微颗粒物的时空分析与监测对其污染的预防与治理十分重要。本文首先利用南京与北京地区2014年5月1日~2019年10月31日的PM2.5监测数据、气溶胶光学厚度(AOD)反演数据以及同期MICAPS
随着我国的科技发展,计量测试、科学研究和生物技术等领域对温度环境提出了更高要求,需要恒温槽来提供恒定温场。恒温槽是以液体为导热介质,通过温度控制系统以及搅拌装置,在内部形成均匀稳定的恒定温场。目前市面上常见的恒温槽主要采用以电热丝为加热装置、以压缩机为制冷装置的结构,本文利用半导体制冷技术代替电热丝与压缩机,设计了一种体积小、性能高、成本低、便于携带的恒温槽。首先,根据恒温槽的工作原理,对恒温槽系
虚拟手术是虚拟现实技术在医学领域的典型应用,它通过计算机生成虚拟环境来模拟手术过程中可能出现的各种现象。在虚拟手术中,软组织模型是人体器官与手术器械交互的基础,其优劣性直接影响着虚拟手术的成功率。然而,软组织是一种具有复杂性质的特殊弹性材料,这导致了软组织模型的精度和实时性难以协调。为了解决上述问题,本文主要完成的研究工作如下:(1)为了真实再现软组织受力变形,提高虚拟手术的精度和实时性,有必要对
针对中国冬季气温异常的研究往往关注其自身及相关影响因素的年际、年代际变化。目前越来越多的研究开始关注季节内振荡特征,但关于次季节与其他尺度相互作用对冬季气温异常的影响研究还不多,因此本文通过分析诊断1959-2011年的逐日观测资料和再分析资料,对中国冬季气温的次季节尺度振荡结构及其演变特征进行研究,并且运用温度方程诊断了不同尺度相互作用对冬季气温年际变化的影响,探讨与次季节尺度相关联的尺度相互作
水体中油类污染严重影响生态环境和人类身体健康,如何有效控制水体中油类污染已经成为当前研究的热点。利用秸秆材料作为吸油剂,吸附去除水体中油类污染物是常用的去除方法,但直接利用秸秆材料作为吸附剂吸油容量低,将秸秆进行改性是常用的提高吸附容量的方法。本论文选取廉价易得的红麻秸秆作为研究对象,通过物理和化学预处理以及表面化学改性和物理结构改性制得了两种吸油材料KAPKS和NNRKS,通过SEM,FT-IR
四旋翼无人机作为多旋翼无人机的一种,具有结构简单和可垂直起降等优点,应用极为广泛。基于机器视觉的应用研究调研,本文将机器视觉应用到四旋翼无人机上,开展了基于机器视觉的无人机的研究设计及调试实现。整个系统平台由飞控平台和视觉单元两个核心部分组成。飞控板采用STM32处理器,并板载陀螺仪等传感器,负责实时估算无人机的位姿信息和驱动旋翼运转,为无人机的稳定飞行提供基础。接着研究了四旋翼的飞行原理,利用牛
各式各样的斑图普遍存在于自然界中,可分为形成于热力学平衡条件下的斑图或远离热力学平衡条件下的斑图.对于第一类斑图的形成通常我们可以用热力学平衡态规律加以解释;而对于第二类斑图的研究逐渐发展成为非线性科学领域的一个分支–斑图动力学.本文主要研究扩散影响下捕食系统的动力学行为.从理论角度分析Turing不稳定产生的条件,并用数值模拟的结果验证在Turing参数域中可以生成各种各样的时空模式.本文的具体
针对目前京津冀地区面临的严峻大气污染问题,本文对该区域主要污染物PM2.5与O3进行研究分析。主要内容包括:利用2014~2017年京津冀区域空气质量数据,结合同期地面常规气象资料、全球NCEP/NCAR再分析资料,主要分析了PM2.5与O3浓度的时空变化特征,探讨了气象条件对PM2.5和O3污染形成的影响;并分别对PM2.5和O3重污染高发季节的污染过程及大气环流背景进行重点分析,在此基础上与同
尽管近些年来基于相关滤波与深度学习的跟踪方法已经取得很大进展,但是依然面临跟踪速度与跟踪精度不能同时满足导致在实际场景中应用的问题。其中主要问题就是传统的孪生网络跟踪算法由于其网络模型太浅、表征能力有限使得模型判别性较差。为解决上述问题,本文主要研究基于全卷积孪生网络的跟踪算法,论文贡献主要包括以下两点:(1)在本文中,首先利用修改后的表征能力更强的VGG网络作为特征提取的网络,然后利用一个双重注
当前的实例分割方法主要分为基于目标检测的方法和基于语义分割的方法。以Mask R-CNN为代表的基于目标检测的实例分割方法的分割准确度通常高于基于语义分割的实例分割方法。因此,本文以目标检测算法作为基本框架搭建实例分割模型。然而,现有目标检测器的预测端都为结合RoI池化(Region of Interest Pooling)的全连接层或3×3预测核,这两类预测端都存在与多尺度目标特征不对准的问题,