具有给定上下界的期望与框架

来源 :陕西师范大学 | 被引量 : 0次 | 上传用户:kingknife2000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文研究了其数学期望具有给定上下界B,A的d阶矩阵C的性质,给出了这些矩阵之集Md(A,B)的一系列性质.研究了空间Cd的具有给定框架上下界B,A的框架的性质,给出了这些框架之集Fd(A,B)的一系列性质.然后,寻找了框架集Fd(A,B)与矩阵集Md(A,B)之间的关系,利用框架的一些结论,得到了矩阵集Md(A,B)的进一步性质.随后,引入了期望算子,给出了它们的一些相关结论,建立了重构公式.最后,研究了矩阵集Md(·,·)的相关扰动问题.全文共分四章:第一章中,本章给出了框架的背景和研究现状,以及框架理论的相关的预备知识.第二章中,首先定义了矩阵C的期望为Eφ(C)=<φ|C|>,(?)φ∈A(Cd),验证了Eφ(·)的一些性质;然后将期望下界为A,期望上界为B的d阶矩阵之集记为Md(A,B),探究了Md(A,B)的一系列性质.本章分为两部分:首先,我们给出了相关的预备知识;然后,又进一步探究了Md(A,B)的一系列性质.第三章中,我们将用Fd(A,B)来表示Hilbert空间Cd中所有以A为框架下界、B为框架上界的框架之集,建立了框架集Fd(A,B)与矩阵集Md(A,B)之间的关系;然后,利用框架的一些结论,进一步得到了矩阵集Md(A,B)的一些性质及相关结论.第四章中,首先引入了期望算子,然后给出了它的一些相关结论,建立了重构公式;探究了Md(·,·)的扰动问题.
其他文献
1994年,D.J.Foulis和M.K.Bennett提出了效应代数的概念,为量子力学提供了一般框架,对于研究量子逻辑非常有用.本文在已研究的基础上,主要讨论了效应代数上态和赋值的存在性及其存在形式,证明了具有非空态空间的效应代数是可表示的,并且给出了可表示的效应代数的等价刻画.最后,证明了可表示的效应代数上的态的存在性,并得到了一些研究结果.全文共分三章,具体内容安排如下:第一章,简单介绍了推
动物线粒体基因组由于其结构简单、进化速率快、母系遗传和发生重组率低等特点,己被广泛用于群体遗传学、系统发育重组、比较和进化基因组学以及基因组水平分子进化等领域的研究。本研究利用Sub-PCR技术,测定了太白虎凤蝶Luehdorfia taibai, Chou,1994、断纹波水螟Paracymoriza distinctalis,(Leech,1889)和长臂彩丛螟Listaharaldusali
本文讨论了两类捕食-被捕食模型解的性质,主要包括解的存在唯一性、有界性、稳定性与各种分支问题.在生物群落中,种群数量通常与种群的出生率、死亡率等因素有关,这些因素对种群数量的影响都带有一定的持续性,在数学模型中这种时间上的持续现象称为时滞.第二章研究了具有离散时滞与干扰系数且带有功能性反应函数的捕食-被捕食模型对该模型的正平衡态存在唯一性、稳定性、Hopf分支进行了分析.首先依据特征值理论,经计算
本文主要是对MRA小波(由一个多分辨分析产生的小波)进行了一些研究.由于小波所需要满足的分解性质和重构性质,使得构造小波具有一定的难度,尤其是具有这些最好性质的标准正交小波,需要更加严格的限制.自从Mallat提出多分辨分析理论后,人们渐渐从多分辨分析的角度来研究小波.本文是在学习小波分析及相关的文章后,通过吸收和借鉴众多专家和学者的科研成果完成的.主要研究的是n维空间及其约化子空间中MRA单小波
序同构是数学中的重要概念.对于给定的集合X,设T(X)是X上的拓扑的全体,CL(X)是X上的Kuratovski闭包算子的全体.如果能给出CL(X)上的偏序关系≤以及序同构F:(CL(X),≤)→(T(X),∈),则说可以用Kuratovski闭包算子确定拓扑.本论文研究软拓扑的确定和有限拟阵的确定问题.论文的结构和主要内容安排如下:第一章预备知识.给出了本文中将要用到的有关软集、软拓扑和拟阵的基
本文讨论了具有干扰和分段常数变量的单种群模型,以及一类带有离散和分布时滞的捕食—被捕食模型解的定性问题,主要包括了平衡态的局部渐近稳定性、全局渐近稳定性、Flip分支和Hopf分支等问题.通过对这些生物模型动力行为的讨论可间接了解种群的增长规律,对如何维持生物种群多样化,保护生态系统的可持续发展具有重要的指导意义.本文第2章研究了如下单种群模型此模型带有干扰参数α,β0,β1及时滞,通过计算并借助
害虫控制是农业生态部门十分关心的问题,利用数学模型能够帮助分析如何实施害虫治理,如喷洒杀虫剂的时间,投放天敌数量等.近年来,许多学者利用脉冲微分方程研究具有喷洒杀虫剂的害虫控制模型及具有喷洒杀虫剂与投放天敌的综合害虫治理模型,得到许多有意义的结果.然而,这些工作均忽略了害虫对杀虫剂的抗性发展这一生物背景.害虫对杀虫剂的抗性发展作为长期使用杀虫剂控制害虫所引发的负面效应之一,近年来受到广泛关注.害虫
迄今为止,生态学研究已经取得了巨大的成就,而通过建立数学模型来研究生物系统已经成为大家的首选,这也推动了生物数学的发展.近几年种群生态学和病毒感染动力学系统被广泛的应用,关于它的研究也引起广大数学家的关注,成为生态学中广泛研究的课题,与此同时也取得了很好的成绩.在本文当中,我们主要研究了两类反应扩散方程的动力学性质.一类是带有交叉扩散项的捕食食-饵模型的共存态问题一类是齐次Neumann边界条件下
目前,在物理学、生物化学、医学及一些新兴的自然学科相关实际问题的解决过程中,模型已经占据了非常重要的地位.科学家可通过模型来模拟一些试验和刻画一些自然现象.在对大量的模型研究的过程中,人们发现其中有不少模型可归结为反应扩散方程.通过对反应扩散方程的研究我们可以更加科学地解释一些自然现象和一些生态问题,从而更准确地进行预测和防范.随着人们对反应扩散方程研究深入,这方面的理论知识也在不断完善.本文运用
小波分析(Wavelet Analysis)是当前应用数学和工程数学中一个飞速发展的新领域,是在Fourier分析之后的又一个伟大的创举,它可以解决Fourier分析所不能解决的的许多难题,而且还给当前的理论科学,应用科学等许多领域提供了强有力的工具,且对非线性问题,智能计算,网络与信息安全等方面有着很好的推动作用.本文是关于A-伸缩正交多分辨分析(OMRA)小波的一些研究,该OMRA小波的概念最