无损表面等离激元孤子存储与读取的理论研究

来源 :山东师范大学 | 被引量 : 0次 | 上传用户:xianxing599
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
电磁感应透明(electromagnetically induced transparency,简称为EIT)现象自上世纪被发现以来成为了人们主动调控介质光学性质的重要手段之一,其可以显著增强光与相干介质的线性及非线性相互作用,使得弱光非线性效应得以实现。近年来,EIT在光波群速度减慢、光存储、光开光、光孤子等领域均具有重要的应用。其中,基于EIT机制的光存储因其优异的存储性能和广阔的应用前景近来成为光学领域的研究热点之一。随着实验技术的不断成熟,自由空间冷原子气体、热原子气体、掺杂晶体材料、空芯光子晶体光纤、纳米光纤表面等体系中基于EIT的光存储及读取均已被实现,并有望在不久的将来能够运用到全光信息处理中。近年来,金属微纳结构中的表面等离激元(Surface Plasmon Polaritons,简称为SPPs)的研究逐步发展成为微纳光学领域的一个重要分支。SPPs是入射光子与金属表面自由电子相互作用而产生的集体激发模式。SPPs的能量能够被约束在远小于光波波长的空间尺度内,从而突破聚焦光束衍射极限的限制且具有近场电场增强的特性。因此,SPPs被认为是实现新一代微纳集成光子器件最具前途的载体之一。随着人们对存储设备小型化的迫切需求,微纳波导中实现SPPs的存储也引起了大量科研工作者的关注。然而,由于金属欧姆损耗、体系中色散、衍射等效应的存在,SPPs存储的效率及保真度难以提高。针对上述问题,本文深入研究了增益辅助下金属-电介质-金属(metal-dielectric-metal,简称为MDM)波导中对称及反对称SPPs模式的光存储及读取,主要研究结果包括以下两个方面:(1)Ladder型三能级冷原子系统中通过增益辅助实现对超慢光孤子的相干控制。基于半经典理论和奇异微扰方法,首先求导出了描述体系中光与三能级Ladder型原子气体相互作用的Maxwell-Bloch方程,其中三能级Ladder型原子气体顶能级选为里德堡态。其次,采用多重尺度法解析求得了各阶解,在线性区域,推导得到了探测光的色散关系及群速度,实现了探测光的慢光群速度传播,并探究了非相干泵浦对体系线性性质的影响;在非线性区域,导出了探测光非线性传播所满足的非线性薛定谔方程,通过选取适当的系统参数,获得了在透明窗口稳定传播的光孤子,并通过数值模拟的方法,探究了光孤子的稳定性以及相干控制。(2)MDM波导中Ladder型三能级冷原子系统中增益辅助SPPs的存储和读取研究。首先,从Maxwell方程组出发,推导得到MDM波导对称和反对称横磁(TM)模式分布,并得到其本征色散关系,由于光被紧束缚在金属表面,因此光与原子的相互作用得到极大地增强,同时,EIT效应也得到增强。对比研究发现,SPPs的对称模式欧姆损耗小,为长程模式但光的局域增强因子小,而反对称模式欧姆损耗大,为短程模式但光的局域增强因子大。基于半经典理论,导出了描述体系动力学演化的Maxwell-Bloch方程,由于模式的非均匀分布,EIT的色散也具有空间分布不均匀的特征,我们发展了一套系统的处理体系中非均匀效应的平均场理论,证明SPPs孤子可以产生,基于EIT机制实现了SPPs孤子的高效率、高保真度的存储与读取,同时,我们还对如何优化SPPs孤子的存储,进一步提高效率和保真度进行了理论探索,研究表明利用体系中的非线性效应可以有效提高SPPs的存储效率及保真度。该研究所得到的结果在微纳尺寸光互联、全光信息处理领域具有重要应用价值。本文所研究内容对建立波导体系中SPPs与多能级量子发射体共振相互作用的基本理论和计算方法、深入了解SPPs的非线性和量子光学性质,及探索SPPs在微纳集成全光信息处理与传输中的应用均具有较为重要的意义。
其他文献
铁路行业不断提升的电价和能源消耗促使铁路公司寻求一条合理有效的途径来实现其可持续发展。将铁路运输和利用太阳能资源相结合可以成为削减电费、为铁路公司带来更多利润、实现高速铁路产业脱碳的潜在解决方案。传统的货运列车是通过向公共电网购电来满足其正常运行的需要,因此电费支出是一项巨大的开销,同时我国拥有丰富的太阳能资源,在铁路沿线建立分布光伏发电站可以削减电费,优化铁路系统能源结构。因此可以通过对列车进行
有机发光二极管(Organic Light-Emitting Diode,OLED)凭借其超薄性、可弯曲性、视角广等优点在固态照明和信息显示领域得到广泛应用。具有热活化延迟荧光(Thermally Activated Delayed Fluorescence,TADF)性质的材料往往在单重态第一激发态(First Single Excited State,S1)和三重态第一激发态(First Tr
金属卤化物钙钛矿材料凭借其优异的发光效率、色纯度高、光谱可调、载流子迁移率高等特点,有望成为未来显示领域的关键发光层材料。在过去的六年里,钙钛矿发光二极管(PeLEDs)的外量子效率(EQE)已经由不足1%提升至20%。这类材料可以通过简单、低成本的溶液加工的方式直接在基底上生长出低缺陷态密度、高荧光量子产率且传输性能优异的钙钛矿薄膜。对于钙钛矿发光层的可控制备和界面层的优化对器件性能的提升起着关
半个世纪以来,计算机的不断更新换代及其性能的不断提升得益于电子器件小型化的不断发展。为了践行可持续发展的理念,研究者们致力于在纳米尺度上构建出性能更高、能耗、成本较低、占据空间小的微型电子器件。石墨烯是一种零带隙的单原子层二维材料,通过裁剪或者掺杂可以改变零带隙的缺点,使其更好地应用于电子器件中。由于裁剪后石墨烯纳米带的掺杂原子种类、位点可以有无穷多种,进而使其产生各种各样的自旋和电子学特征,因此
白光有机发光二极管(White Organic Light-Emitting Diodes,WOLEDs)由于其在显示器件、固态照明和分子传感器等方面的应用潜力而受到人们的广泛关注。为了尽可能覆盖可见光区域(380-780 nm),实现WOLEDs的典型方式是由基于两互补色(蓝橙或蓝黄)或者三原色(蓝绿红)的发光体组成。而由于发光材料的发射光谱相对较窄,这使得大部分WOLEDs通常由多个发光材料的
高质量的二维半导体异质结构是微电子学和光电子学发展的重要物质基础,为新型器件应用和基础研究提供了新的机遇。在各种异质结构集成策略中,范德瓦尔斯集成更有利于创建具有高质量界面的二维异质结构,因为它可以在没有晶格和处理限制的情况下,通过微弱的范德瓦尔斯相互作用将完全不同的材料物理地组装在一起。由于不要求合成相容性,目前的范德瓦尔斯集成法在选择不同材料的晶格结构上比传统的生长方法更灵活,它在创造人工异质
高分子聚合物具有质量轻、力学性能好、电绝缘性能优秀以及制备成本低等特点,可广泛应用于能源、化工、电气、机械等领域。但聚合物的热导率通常较低,导热性能和热稳定性较差,这在一定程度上限制了聚合物的应用范围。在聚合物中添加高导热填料可以提高材料的热导率,而填料与填料、填料与基材之间的界面是影响聚合物复合材料热导率的重要因素,因此认识并研究聚合物基纳米复合材料中界面对热量输运的影响具有重要意义。本文以氮化
目前,量子计算,生物计算等前沿技术受到人们越来越多的关注,这些技术有望突破传统计算机的限制,解决更为复杂的问题。纳米孔技术是进行分子信息检测与读取的重要手段,在医学领域与生物计算领域都能发挥巨大作用。该技术通常基于样本的电信号特征对分子进行检测,具备灵敏度高、分辨率高、无需标记等优点,尤其是DNA自组装技术与纳米孔技术相结合的自组装纳米孔技术,分辨率更高,能检测更小的分子信息。本文将氮化硅固态纳米
PM2.5是我国目前大部分城市的首要污染物,尤其在我国北方地区,秋冬季发生的雾霾事件严重影响了民众的生活及健康。PM2.5来源复杂,既包括一次污染物又包括二次转化后的污染物,因此其来源解析技术也需全面考虑。而不同模型在开展PM2.5来源解析上均具有优缺点,如何获得准确的PM2.5来源解析结果是目前亟需解决的科学问题。本研究以典型污染城市-长治市为例,分别使用CMB及CMAQ模型开展PM2.5来源解