【摘 要】
:
空间网格结构作为大跨度建筑中常用的结构形式,其节点的连接构造及性能直接关系到结构安全、施工周期及经济效益等多方面。螺栓球节点具有装配化程度高,施工速度快的特点,焊接空心球节点具有杆件对中方便,刚度大、密闭性好的特点。若能得到集上述两种常用节点优势于一身的节点,必将大幅提高空间网格结构的技术先进性,安全适用性,经济合理性。本文在课题组研究的基础上,针对采用管类构件的空间结构节点开展研究,主要工作内容
论文部分内容阅读
空间网格结构作为大跨度建筑中常用的结构形式,其节点的连接构造及性能直接关系到结构安全、施工周期及经济效益等多方面。螺栓球节点具有装配化程度高,施工速度快的特点,焊接空心球节点具有杆件对中方便,刚度大、密闭性好的特点。若能得到集上述两种常用节点优势于一身的节点,必将大幅提高空间网格结构的技术先进性,安全适用性,经济合理性。本文在课题组研究的基础上,针对采用管类构件的空间结构节点开展研究,主要工作内容及成果如下:(1)总结鼓形球面壳节点、螺栓球面壳节点的构造及特点,开展构造设计,得到无安装孔、耐久性能好、具有后续安装基准平面,适用于多层网架或管桁架的螺栓空心球壳节点。(2)建立球壳、高强度螺栓、曲面欧式螺母、单曲面垫圈、套筒的整体模型,利用ABAQUS有限元分析软件分析轴向力作用下受力性能,得出各部件的应力分布,变化规律,破坏机理等。(3)分析螺栓空心球的D、T、D/T、螺栓规格、套筒横截面外接圆直径e、螺母接触球壳端直径dm等主要参数对螺栓空心球壳节点承载力的影响,提出适用于该节点的承载力计算公式。(4)讨论空心球内设置加劲肋的厚度、宽度、长度、布置方式及数量对螺栓空心球壳节点承载力的影响。(5)针对某高校试验室新建网架结构,分别设计焊接空心球节点,螺栓球节点,螺栓空心球壳节点,对比了结构用钢量、连接构造、装配化程度、现场焊接工作量、对中性等特点,结果表明采用螺栓空心球壳节点综合效益显著。
其他文献
叶片作为航空发动机的核心零部件,长期工作在高温、高压的环境下,叶片表面质量的好坏决定着航空发动机的使用寿命和服役性能。作为提高表面质量技术之一的滚磨光整加工技术,利用滚抛磨块对零件表面产生微量磨削,能综合改善零件的表面完整性。其中,振动式滚磨光整加工具有加工效率高、应用范围广及加工质量好等特点,可用于加工构形复杂的航空发动机叶片类零件。本文针对铣削后叶片存在的表面缺陷提出圆柱形滚筒和叶片组合型腔一
7075铝合金是一种经过冷锻处理的合金,具有强度高,耐应力腐蚀和抗断裂腐蚀,稳定性好,可塑性和阳极反应性好等优点。7075铝合金主要用于高铁、航空航天、汽车模具、机械设备、工具和固定装置,特别是用于飞机结构和其他要求高强度和强耐腐蚀性的高压结构的制造。目前,由于冷锻铝合金材质较软,微孔壁面加工精度难以保证。因此,本文针对冷锻7075铝合金材料,深入研究微细磨具的制备方法及对微孔壁面的抛光试验。具体
颗粒增强钛基复合材料具有比合金更好的高强高温性能,在航空航天领域的具有广泛的应用前景。但传统熔铸法制备的钛基复合材料具有强度高但室温塑性差的劣势,限制了其应用范围。通过热加工工艺可以调控组织形貌,进而改善复合材料的力学性能。硅元素被广泛用以改善钛合金及钛基复合材料的高温性能,但硅化物的热变形析出机制和对基体的力学性能的作用至今没有系统的研究。本论文通过对5vol.%TiCp/Ti复合材料进行降温锻
高超声速飞行器迫切需要新型轻质耐热合金代替Ni基高温合金来制造进气道等关键构件以实现结构减重,NiAl合金因其具有较低密度和较优高温性能,成为首选材料之一。一般,轻质耐热合金复杂薄壁构件的传统制造方法为先通过“熔铸-锻造-轧制”方法制备其板材,再对板材二次成形出最终构件,即“先成材,后成形”。但由于NiAl合金本征脆性,NiAl板及其复杂曲面薄壁构件难以通过传统方法制备。基于此,本文提出采用Ni/
航空航天事业的快速发展迫切需要轻质耐高温的结构材料来替代Ni基高温合金,在此背景下,具有密度低、比强度高、服役温度高、结构稳定性好和抗氧化等优点的Ni-Al金属间化合物可作为优选材料以实现结构减重、高承温的目标。但由于其具有本征脆性,室温下塑韧性差,薄壁结构板材的制备较为困难,且在高温下单一相强度较低,基于此,本文试图通过引入塑性层来提高Ni-Al金属间化合物的高温强度及塑韧性,以制备出高性能的结
ZrB2基超高温陶瓷在极端环境中能够保持自身性质稳定且熔点高于3000℃,因其具有优良的力学性能、高热导率及良好的抗热振性等特点,被广泛应用于超高温结构防护中。本文围绕ZrB2基超高温陶瓷的力学性能、高温氧化行为进行如下研究。(1)采用放电等离子烧结法制备了致密度优良的ZrB2-SiC超高温陶瓷。通过密度测试发现,ZrB2-SiC超高温陶瓷相对密度为99.1%。采用纳米压入法对其进行硬度、弹性模量
航空整体加强框在机身部件级装配过程中起主承力、主定位作用,其刚度相对飞机其它零件较高,周边轮廓与其他零件进行装配协调时,同样的定位间隙会产生更大的装配应力,造成后续装配定位操作困难,部件装配精度降低及应力腐蚀,甚至导致飞机强度和寿命的降低。为了保证飞机机体部件的装配精度,需要成倍地提升大型整体结构件的定位质量。正视制造差异,改变传统强迫定位造成的定位过程管控性差和定位结果复现度低的现状,保证大型整
基坑工程是集地质工程、岩土工程、结构工程和岩土测试技术于一身的系统工程,在深基坑开挖过程中,基坑支护结构的设计与施工对保证地下结构施工及基坑周边环境的安全具有重要的意义。但在常规设计中,通常基坑支护结构是在朗肯主动土压力作用下计算的,与实际情况往往存在一定的差异。同时,在使用弹性地基梁法分析基坑支护结构的变形时,用m法来计算土的水平抗力系数是其中一种较为常用的方法,但土体的水平抗力系数的比例常数m
螺栓球网格结构在体育馆、车站等人群密集的公共建筑中大量使用,该类建筑除满足日常的功能外,还需在地震发生后发挥地震避难所功能,其安全性与人民的生命及财产安全密切相关。震害调查及研究结果均表明,螺栓球节点是螺栓球网格结构中的薄弱环节,在强震下易发生超低周疲劳破坏,震害表现为高强度螺栓拉脱、拉断、弯曲、折断等。因此,对螺栓球节点在强震下的超低周疲劳性能研究成为了防灾减灾和建设韧性城市领域中的重要问题。本
悬挂结构以其良好的建筑适应性、明确的传力路径以及潜在的高效结构性能等综合优势,深受建筑师和结构工程师的青睐,在国内外众多标志性的高层建筑中得到应用。在我国装配式建筑发展如火如荼的今天,如何应用高强钢材构建一种新型的装配式高层悬挂钢结构体系,并将其推广应用于示范工程,本文依托国家自然科学基金项目(51578357)的资助,针对其关键技术问题开展理论分析及试验研究,主要研究内容结论如下:(1)在文献查