论文部分内容阅读
多孔配位聚合物,也称作金属有机骨架化合物,是一类新型的功能材料,由于它们具有高的比表面积、可调的孔尺寸/形状、可修饰的骨架结构等特点,近年来受到人们的广泛关注。作为当今的研究热点之一,配位聚合物材料不仅展现出丰富的新颖结构特征,而且在气体储存、二氧化碳捕捉、吸附与分离、天然气纯化、催化、光学、磁学等诸多领域显示出巨大的潜在应用价值。该领域的研究工作主要集中在两方面:一是合成结构新颖的配位聚合物,对其进行性质研究;二是对已知结构进行功能化,提高其潜在应用价值。目前,可以通过多种合成策略来构筑结构新颖的配位聚合物,例如次级结构单元法、三元次级结构单元法、超分子构筑块法、混合配体法和混合金属法等。对已有结构进行功能化主要包括对不饱和金属位点的修饰和功能性有机配位点的引入两种修饰策略。本论文通过选择四氮唑羧酸H2TBA=4-(1H-tetrazol-5-yl)-benzoic acid和多齿羧酸H4TPTA=5,5’-(naphthalene-2,7-diyl)-diisophthalic acid,H4BDPP=5,5’-(buta-diyne-1,4-diyl)-diisophthalic acid),H5DDCBA=3,5-di(3’5’-dicarboxylphenyl)benzoic acid为有机配体,利用多种有效的合成策略,成功地制备了16个结构新颖的配位聚合物,对其进行了详细的结构解析及表征。对一些化合物进行了氢气储存、二氧化碳捕捉、气体吸附与分离、C6异构体拆分、染料吸附、荧光检测等性质研究。本论文的研究工作主要分为以下三个部分:1.四氮唑羧酸配体配位聚合物材料的合成及性能研究。(1)以[Cu4Cl]7+四核簇为四边形次级结构单元与直线型的有机配体自组装构筑了一例类沸石方钠石结构的配位聚合物。与用三角形配体构筑的方钠石骨架不同,在该结构中,配体作为多面体骨架的边,而非面,这对于构筑更为开放的沸石骨架化合物具有重要的指导意义。该化合物具有较高的比表面积,对H2,CO2以及有机化学污染物显示出强的吸附能力。由于该化合物具有不饱和金属配位点,通过后修饰合成乙二胺功能化的骨架材料展现出更强的CO2吸附能力。(2)化合物2是由六核硫酸铜簇次级结构单元构筑的具有介孔孔道的配位聚合物,其Langmuir比表面积高达5443m2 g-1,对C3H8展现出优异的吸附能力348 cm3 g-1(273K,1 atm),远高于目前已报道的配位聚合物材料。该化合物对有机染料荧光素钠展现了快速选择性吸附的效果。(3)利用混合配体的方法,构筑了一例具有三角形、菱形和四边形三种类型孔道的配位聚合物3,该化合物对多种气体具有高效的吸附能力并对甲烷表现出优异的分离效果。通过吸附床穿透测试发现化合物3对C6异构体(n-HEX、3MP、23DMB、22DMB)表现出非常好的拆分效果,在支链烷烃分离方面具有潜在的应用价值。(4)通过混合配体的方法,自组装构筑了一个具有丙酮选择性识别效果的配位聚合物4。通过改变合成策略,利用双金属混合的方法或次级结构单元的合成方法,构筑了微孔配位聚合物5-8。其中,化合物7对硝基化合物具有检测识别能力?2.四齿羧酸配体配位聚合物材料的构筑及性能研究。(1)与简单的次级结构基元相比,金属有机多面体作为超分子构筑基块,其自身包含空腔结构,具有更多的节点数,赋予骨架材料高的孔隙率及稳定性,所构筑的材料往往具有特殊的孔道结构,展现出独特的气体吸附性能。利用金属有机多面体合成策略,设计合成了同构的微孔配位聚合物9-10。化合物9含有三种不同形状、不同尺寸的金属有机多面体笼,具有较高的比表面积、小的孔道窗口、不饱和金属位点等特点,对CO2展现出很好的存储能力(170 cm3 g-1,273 K,1大气压),对CH4具有优异的分离效果。(2)以H4TPTA为有机配体,利用三元次级结构单元合成策略,合成了两个三维配位聚合物11-12。结构中形成了鲜有报道的链状的四核锌簇和五核铟簇次级结构单元;利用次级结构单元合成方法,构筑了三维配位聚合物13。3.五齿羧酸为配体多孔配位聚合物材料的组装及性质研究。(1)利用三元次级结构单元合成策略,设计合成了两种微孔配位聚合物14-15。在化合物14的结构中,同时含有单核铟与双核铟次级结构单元,二者在一个结构中共存的现象非常少见。这两种化合物结构中不饱和金属活性位点以及多级孔道体系的优点,使其对CO2、C2H6与C3H8的吸附能力远大于对CH4的吸附能力,显示出良好的吸附选择性,在天然气纯化方面具有潜在应用价值。(2)利用次级结构单元合成策略,以硝酸铟为金属源与该酸配体自组装合成了一例三维的配位聚合物16。其结构中含有少见的五核In-O-In链簇次级结构单元,这些五核链簇次级结构单元通过氧原子桥连形成具有手性特色的螺旋链结构。