论文部分内容阅读
膜蒸馏技术作为一种新型的海水(苦咸水)淡化技术,仅依靠微孔高分子膜两侧的温差使挥发性组分透过膜孔,即可达到浓缩、分离的目的[67]。在膜蒸馏组件中,膜通量的大小取决于蒸气与制冷表面的温差,待处理溶液冷端温度越低、热端温度越高,其传质通量也越大[68]。鉴于半导体制冷迅速、无噪音等优点,将其替代膜蒸馏系统中冷循环系统采用的制冷机,可以实现膜蒸馏淡化苦咸水系统小型化。本文改进了一种新型的半导体制冷膜蒸馏系统,将具有半导体制冷的冷腔与膜蒸馏系统的热腔有机的结合起来。实验研究表明:半导体制冷膜蒸馏冷腔4分钟就可达到稳定,制冷迅速;稳定运行后,制冷面各个测点的温度差值最大只有0.5℃,制冷面温度均匀;半导体输入电流较小时,影响半导体制冷性能的是半导体的输入电流,半导体输入电流较大时,影响半导体制冷性能的除了半导体的输入电流还有半导体热端的散热强度;相同输入电流时,冷却水流量越大膜通量也越大,热液温度75℃时,流量对膜通量的影响最大;单位热液温度增长的膜通量平均为1.8g/℃,单位输入电流增长的膜通量增值为0.6-0.8g/A,热液温度是膜通量主要影响因素;热液温度增大时,半导体输入电压降低。分析并计算了半导体制冷膜蒸馏系统的能耗。半导体制冷性能和膜通量在热液高温区域都随热液温度陡增,但一味地增加热液温度会带来系统的额外能耗;在相同热液温度下,膜通量的变化趋势与系统吨水能耗的变化趋势相同;热液温度75℃,输入电流8A增大到12A时的系统吨水能耗几乎呈线性增长,能耗的增量基本维持在8.5%。确定了半导体制冷与膜蒸馏系统匹配时的最优耦合工况。提出了两种判定准则,通过两种准则得出,具有较大的膜通量的工况不一定具有较好的经济性。本文的研究为小型半导体制冷空气隙膜蒸馏系统的理论与应用研究奠定了基础。