【摘 要】
:
周期运动是一种非常完美的运动,具有很多好的性质,我们只需要知道它局部的性质就可以推断出它的整体性质.但是由于周期运动比较简单,因此应用方向比较窄.自然界中的多数运动不能
论文部分内容阅读
周期运动是一种非常完美的运动,具有很多好的性质,我们只需要知道它局部的性质就可以推断出它的整体性质.但是由于周期运动比较简单,因此应用方向比较窄.自然界中的多数运动不能用单一的周期运动来描述,而需要用概周期运动来描述,抽象到数学上就是概周期函数.为了实际问题的需要,扩大应用范围,很多数学工作者又相继提出了渐近概周期函数、伪概周期函数、遥远概周期函数、概自守函数,渐近概自守函数和伪概自守函数等相关的概念. 概周期型函数理论和概自守型函数理论在微分方程中的应用是概周期型函数理论和概自守型函数理论研究的重要方向.本文主要将渐近概周期函数理论和渐近概自守函数理论分别应用到了两类中立型微分方程中,讨论了这两类微分方程分别在怎样的条件下有渐近概周期温和解和渐近概自守温和解,且解是唯一的. 本文的主要结果分为两部分: 第一部分利用不动点定理,并结合算子半群有关理论讨论了一类中立型微分方程的渐近概周期温和解的存在性问题和唯一性问题. 第二部分利用卷积族的指数二分性及不动点定理研究了另一类中立型微分方程的渐近概自守温和解的存在性问题和唯一性问题.
其他文献
本文运用自适应最小二乘混合有限元法对伪抛物型积分微分方程进行求解.首先引入中间辅助变量,使原初边值问题转化为未知函数和通量函数的低阶方程组系统,而后将自适应最小二乘
“执一事,终一世.我将一如既往地扎根一线,在高原带电作业领域干出一番业绩.”今年1月,获得国家电网有限公司国网工匠称号的扎西尼玛说.rn担任西藏拉萨供电公司带电作业保电
在可靠性分析中,人们往往通过分析系统的寿命数据来估计该系统中各组成单元寿命分布中的未知参数。系统寿命试验数据包括两个方面,一是失效时间,二是失效原因,即系统的失效是由哪
“这次带来的创新成果是低碳入住计划,我们还制作了一张碳单,聚焦酒店行业,跟踪客户耗能情况……”1月10日,被评为国家电网有限公司特等劳动模范的浙江杭州供电公司员工徐川
酶催化反应是在生物体内普遍存在的生化反应,对于催化反应的研究已经有上百年的历史,其中最为经典的是Michaelis和Menten根据中间络合学说推导出了底物浓度与反应速率的关系,这
疫情防控是一场没有旁观者的全民行动.让人感到欣慰的是,在与时间赛跑、与病魔较量的紧要关头,到处活跃着年轻人的身影,到处都能看到青春的力量和担当.rn农历正月初一,江苏首
上世纪90年代初,一篇《夏令营中的较量》在社会上掀起轩然大波,中国的“80后”从此背上了一个沉重的标签——“被溺爱的一代”.他们是实行计划生育后的第一代独生子女,赶上了
1919年爆发的五四运动,“以磅礴之力鼓动了中国人民和中华民族实现民族复兴的志向和信心”.以“爱国、进步、民主、科学”为核心的五四精神,在新的历史时期被赋予新的时代内
在现实生活中,人们对事物的判断往往带有模糊不确定性,这种模糊不确定性在模糊集理论上,通常用模糊数来描述.因此,模糊数比较与排序是模糊优化及模糊决策研究的重点课题,国内外学