论文部分内容阅读
花青素是一种重要的植物色素,在植物的花,果实和叶片中广泛分布。花和果实中的花青素起到吸引昆虫授粉和种子传播的功能,而叶片部位积累的花青素会受到阳光和其他胁迫诱导,其生物学功能为保护植物免受紫外线伤害,抵御病虫侵害。陆地棉红色植株R1是因为花青素的积累而导致的叶片颜色改变,并具有抗虫性的优点。另一陆地棉品系亚红株Rs的叶片颜色较红色植株R1稍浅,有较高光合作用效率的特点。由于花青素在陆地棉中的重要功能,对其进行遗传学研究对于改良棉花品质具有重要的理论指导和应用价值。陆地棉品种T586含有红色植株性状,和渝棉一号之间的遗传背景相差较大,前期研究利用SSR分子标记和重组自交系构建了陆地棉的高密度遗传图谱,对于陆地棉的育种研究及基因定位具有重要的价值。但是两种材料之间的SSR标记数量已接近饱和,并且SSR标记的分布密度较低。随着陆地棉的基因组的公布,基因组重测序技术使得陆地棉开发SNP标记和In Del标记也变得较为容易,便于我们对陆地棉的质量性状进行图位克隆和精细定位。本论文通过对陆地棉材料T586和渝棉一号进行基因组重测序,获得了材料间的SNP及In Del位点信息。利用重组自交系群体,通过开发SNP标记成功将红色植株R1基因定位为Gh PAP1D基因,遗传转化实验证实Gh PAP1D在棉花中具有促进花青素合成和积累的功能,并通过转录组和双荧光素酶报告系统对Gh PAP1D在棉花中的花青素调控机制进行了探究。论文还对亚红株突变体的花青素调控基因也进行了基因功能研究,转录组测序分析发现Gh PAP1A的表达差异与亚红株性状相关,序列分析发现亚红株的Gh PAP1A基因启动子区含有50bp的串联重复,GUS染色发现Gh PAP1A的启动子区的50bp串联重复差异是该基因在亚红株中上调表达的原因,并通过烟草遗传转化和VIGS验证了Gh PAP1A基因具有调控花青素合成的功能。主要结果如下:1.通过基因组重测序技术获得陆地棉材料T586和渝棉一号间的SNP和In Del差异信息对陆地棉材料T586和渝棉一号进行了全基因组重测序,分别获得了31.42Gbp和29.55Gbp的Clean data数据,平均测序深度约为10×。对测序数据进行质控发现测序碱基的质量较高(Q20>=96.21%),且GC含量在36.53%~37.07%之间,表明通过测序获得的数据量和测序质量都合格,并且GC含量分布正常。通过比对陆地棉参考基因组TM-1发现,两个样本的比对率在98.89%~99.53%之间,平均覆盖深度在10.65×~13.19×之间,比对结果正常可以用于后续的SNP和In Del变异检测。SNP检测结果发现,相对于参考基因组TM-1,T586样品和渝棉一号分别检测到2,288,133和1,890,741个SNP位点。其中大部分SNP位点分布在基因间区(2,014,437和1,678,640个),其次位于内含子区(分别有117,309和88,167个)。同时对T586和渝棉一号进行材料间的SNP检测发现,共检测到2,131,593个SNP位点差异,也是主要分布于基因间区。分析SNP突变频率发现,其中转换突变大于颠换突变(ts/tv=2.2),总体来说两材料间获得的SNP数量较多,有利于开发相应的分子标记。对In Del位点进行检测发现,相对于参考基因组T586和渝棉一号分别获得了191,876和130,718个In Del位点,主要也是分布在基因间区(151,087和104,163个),其次分布于内含子区(15,357和10,101个)。统计两样品间的In Del位点发现,材料间共含有184,801个In Del位点,且分布位置也主要位于基因间区。对编码区的In Del长度进行统计,发现In Del的数量随着其长度的增加而逐渐减少,并且其中3倍长度的In Del数量要高于其两侧。2.对棉花红色植株R1基因进行遗传定位、序列分析和功能验证利用重测序获得的SNP数据,在R1基因定位区间内开发SNP标记,共筛选到8个在亲本间具有较好多态性的SNP标记。使用新开发标记对RIL群体进行基因分型,将R1基因定位于新开发标记S5和S6之间,两标记的物理距离约232Kb,区间内包含有3个注释基因。转录组和q RT-PCR分析发现三个基因中只有Gh PAP1D(Gohir.D07G082100)的表达水平有差异。比对克隆发现两种材料中Gh PAP1D启动子区含有一段228bp的串联重复差异,因此遗传定位结果表明Gh PAP1D与红色植株R1性状相关。烟草和棉花遗传转化实验发现,超量表达Gh PAP1D基因的棉花和烟草材料的花青素含量显著上升,并且叶片颜色呈现红色,表明Gh PAP1D基因具有调控花青素的合成和积累的功能;另外通过VIGS方法下调Gh PAP1D在棉花红色植株的表达,发现红色植株的叶片颜色变为绿色,花青素含量也相应下降,进一步证实了在棉花叶片中Gh PAP1D起到了调节花青素合成的作用。为明确Gh PAP1D在棉花叶片中是怎样调控花青素的合成的,对超量表达Gh PAP1D的转基因棉花和其Null系的叶片及群体中的红色植株和绿色植株进行了转录组测序。超量表达植株中共发现567个差异表达基因,其中上调基因有305个,下调基因262个。差异基因中有38个和花青素合成相关的基因上调,没有发现下调表达的花青素合成相关基因。其中花青素合成途径的后期结构基因如DFR(Gohir.D06G004300),2个UFGT基因(Gohir.A02G139800,Gohir.D03G050200)和2个GST基因(Gohir.A07G074300,Gohir.D07G079000)在群体中的红色植株中也显著上调,说明Gh PAP1D通过调控花青素合成途径的结构基因的表达来行使促进花青素合成的功能。并通过双荧光素酶报告检测实验验证了Gh PAP1D可以与下游结构基因Gh UFGT(Gohir.A02G139800)和Gh GST(Gohir.A07G074300)的启动子结合,并且起到转录激活的作用。另外对超量表达Gh PAP1D的红色棉花叶片的抗虫性进行了检测。叶片对棉铃虫的抗虫性检测结果发现超量表达Gh PAP1D不仅会影响棉铃虫的取食偏好,而且会抑制棉铃虫的生长。叶片对朱砂叶螨的抗虫性检测发现,超量表达Gh PAP1D的红色叶片对朱砂叶螨的生长和繁殖都具有抑制作用。因此超量表达Gh PAP1D增强了棉花叶片对两种害虫的抗虫性,说明Gh PAP1D是一种可利用的广谱抗虫基因位点。3.亚红株中花青素调控基因Gh PAP1A的表达水平分析,序列分析及功能验证表型观察发现亚红株突变体具有和红色植株相似的红色叶片表型,并且颜色浅于红色植株R1,花青素含量测定发现亚红株中的颜色改变与花青素含量相关。对亚红株进行转录组测序,分析其中花青素合成途径相关基因的表达情况,发现5个花青素合成相关的结构基因的表达水平相对绿色植株上升,但是没有红色植株R1上升幅度大。另外检测花青素合成途径的调控基因Gh PAP1的表达情况发现,亚红株中Gh PAP1A基因的表达水平显著上升,而Gh PAP1D基因表达并无变化,因此表明Gh PAP1A与亚红表型相关。对比克隆亚红株和绿色植株Gh PAP1A的启动子和基因组序列发现,两个材料的Gh PAP1A基因组序列之间具有105个SNP和16个In Del差异,其中第三个外显子区具有3个错义突变(T133I,Y180C and C230S),另外在基因启动子区上游217bp处发现一段50bp的串联重复差异。进一步比对亚洲棉材料相应的Ga PAP1序列发现,亚红株中的Gh PAP1A编码区和内含子区序列与亚洲棉的序列完全一致,启动子区只有50bp串联重复序列的差异,序列的高度相似性表明亚红株中的Gh PAP1A基因是最近由亚洲棉渗入而来。GUS染色发现亚红株的Gh PAP1A启动子活性高于亚洲棉,说明启动子区50bp的串联重复差异引起了亚红株Gh PAP1A基因表达的上调。为了检测亚红株和绿色植株中的Gh PAP1A基因的3个错义突变是否影响基因功能,在烟草中通过遗传转化超量表达这两种来源的Gh PAP1A基因。表型观察发现,两种转基因烟草的表型一致,叶片颜色都呈现红色且花青素含量都相比于野生型烟草显著上升,而两种转化子之间的花青素含量没有差异。因此说明亚红株和绿色植株中的Gh PAP1A基因编码区的差异不影响其调控花青素合成的基因功能,同时也说明亚红株表型是由于Gh PAP1A的表达上调导致的。同时通过VIGS方法在亚红株材料中下调Gh PAP1A的表达,红色叶片转变为绿色并且花青素含量也显著下降,进一步证实了Gh PAP1A基因在亚红株叶片中起到调控花青素合成的功能。