【摘 要】
:
随着用户数量的增加以及用户对服务质量要求的提高,基于软件定义网络(SDN)实现的网络资源管理与控制变得越来越困难。很多中心控制的网络管控问题都可以被建模成NP难的组合优化问题,在当前的设备求解能力下几乎不能在短时间内获得最优解。本文基于训练好的神经网络可快速推断这一优势,设计出了基于深度学习的网络管控问题求解框架,此框架可以学习网络管控问题历史求解经验,使用神经网络直接求解新的网络管控问题。利用此
论文部分内容阅读
随着用户数量的增加以及用户对服务质量要求的提高,基于软件定义网络(SDN)实现的网络资源管理与控制变得越来越困难。很多中心控制的网络管控问题都可以被建模成NP难的组合优化问题,在当前的设备求解能力下几乎不能在短时间内获得最优解。本文基于训练好的神经网络可快速推断这一优势,设计出了基于深度学习的网络管控问题求解框架,此框架可以学习网络管控问题历史求解经验,使用神经网络直接求解新的网络管控问题。利用此方案,本文中尝试解决以下三个中心控制且决策时延敏感的网络资源管控场景:移动边缘计算中的任务放置及资源分配问题、共享瓶颈带宽场景的多视频流管控问题和多商品流负载均衡问题。移动边缘计算中的任务放置及资源分配问题下,本文给出了基于多任务学习的深度学习求解方案FAST-RAM,在运用中能毫秒级完成决策,且在绝大部分的测试案例中给出接近最优的解。本文还针对多任务学习框架所能处理的问题规模受限这一缺陷,提出了问题拆分方案,使得FAST-RAM可运用于有更多任务的场景。家庭网络中的多视频流管控问题下,本文将可行性保证模块与深度学习技术相结合,提出了 FAIR-AREA解决方案,在NS-3仿真中证明了算法可给出几乎最优解,并讨论了更适合组合优化问题的损失函数设计。在多商品流负载均衡问题下,本文基于分类框架和拟合框架设计两种深度学习解决方案,并在多个拓扑的问题场景中讨论了两种方案的适用范围。基于深度学习的网络管控问题求解框架在以上三个场景的成功使用,本文证明了此框架的性能优势,给实际解决中心控制、决策时延敏感的网络问题提供了新的求解思路。
其他文献
近年来随着深度学习技术逐渐发展,其在自然语言处理、计算机视觉等方向的应用范围逐渐拓展,社会需求也在逐年提升。深度学习领域内的卷积神经网络凭借其高效的特征提取能力逐渐成为图像处理的主要方法,极具研究价值和商业价值。传统的人工场景图像分类方法已经无法满足现今动辄上亿的图片数据量。如何使用计算机对场景图像进行理解、分析,进而实现分类、标签、搜索等操作已成为学者们的研究热点。虽然已有许多场景识别方面的研究
在室内场景下对人群数量的计算和统计有助于管理者优化配置公共资源,预防区域内人群密度过大带来的踩踏事故,可实现公共场所的智能化管理。基于传统硬件传感器的客流统计虽已得到较为广泛的应用,但存在应用场景限制和需要预先规划部署等局限性。而随着计算机视觉算法领域的快速发展,基于视觉传感器的人数统计方法较之更为灵活、准确,但也存在人体姿态、复杂背景干扰等众多难题。为此,本文基于多模图像信息(可见光图像信息和深
近些年来,随着社会经济水平的提高,各行各业都有了一定程度的发展,相应的物流业也在这个蓬勃发展的社会中慢慢发展起来。目前,中国的物流装备和技术的迅猛发展带动了整个物流业。但即便如此,中国的物流管理与发达国家相比依旧很落后。粗放式的管理模式没有得到改变,这就导致了供应和需求问题严重以及设备落后带来的问题。现在越来越多的人都开始在网上购物,所以物流业是一个很重要的行业,因此需要引进先进的技术来解决目前存
目标跟踪是计算机视觉领域一个重要的研究方向,现如今其应用已经深入到人们生活中的方方面面。随着深度学习的发展,神经网络也逐渐被引入目标跟踪领域并取得了良好的效果。在实际的应用中,算法需要被部署到性能有限的嵌入式处理器上。因此如何优化跟踪算法,平衡其实时性和准确性,并将其移植到嵌入式平台实现具有重要的意义。本文以ECO跟踪算法为基础,做了一系列改进增加其跟踪的准确性。在深度特征的提取方面,对使用的神经
随着我国5G、物联网、工业互联网和数据中心方面建设需求的增加,光纤光缆作为通信网络建设的基础,成为国家经济发展的信息大动脉,为大范围环境感知和检测提供了良好的物理条件。通信光缆自身安全维护变得刻不容缓,而基于相位敏感光时域反射技术(Φ-OTDR)的分布式光纤声波传感系统(DAS)能够满足通信光缆安全监测的需求,可以实现通信光缆长距离、大范围和全天候的智能安防监测。但是,基于DAS的通信光缆安全监测
分布式声传感(Distributed Acoustic Sensing,DAS)系统建立在相敏光时域反射(Phase-sensitive Optical Time-domain Reflectometry,Φ-OTDR)技术的基础上,在长距离的安全监测中由于其独有的优势而得到了快速的应用。除了基本的检测与识别等功能外,目前的研究越来越倾向于挖掘更深层次的如位置等方面的信息来帮助做出更加准确的决策。
分布式声波传感(DAS)可以用来测量传感光纤周围环境中的许多物理量,相位敏感光时域反射仪(Φ-OTDR)作为DAS的一个主流技术,因其传感距离长、灵敏度高和良好的动态检测能力,一直备受学者关注。近年来,以超弱光纤布拉格光栅(UWFBG)阵列为传感介质的Φ-OTDR,也称为准分布式声波传感(Q-DAS),相比以单模光纤(SMF)为传感介质的普通Φ-OTDR有更高的灵敏度和信噪比,已经成为光纤传感中颇
企业的生产经营过程中会形成大量的档案,这些档案可为企业未来积累丰富的经验,具有重要意义,为此越来越多的企业开始重视档案管理工作。然而档案的保存是一个综合课题,档案的保存周期与库房的各项物理条件息息相关,若保存不当,则档案保存周期非常短,因此需要有一套行之有效的方案来实现自动化管理,基于此,中国移动自贡分公司领导提出构建远程档案库房监控系统。从中国移动自贡分公司综合部实际应用需求出发构建了库房监控系
基于相位敏感型光时域反射仪(phase-sensitive optical time domain reflectometer,Φ-OTDR)的光纤分布式声波传感(distributed acoustic sensing,DAS)技术因其传感点密集、灵敏度高、传感距离长等优势而逐渐成为新一代的声波感知技术。DAS技术利用光纤的后向瑞利散射光的相位信息,可对光纤沿线微小扰动信息进行声波信号的探测,从
基于Φ-OTDR技术的分布式光纤振动传感系统通过检测瑞利散射光信号中所携带的相位信息进行传感,用以实现高密度、长距离的分布式振动传感,目前已广泛用于石油物探、结构健康检测、管线安防等领域。Φ-OTDR系统虽可实现分布式振动探测,但相比于点式光纤地震检波器其灵敏度不高,对微弱振动信号无法有效探测,限制了其在地震勘探中的应用。本文主要研究基于Φ-OTDR系统的矢量光纤地震检波器,通过声波增敏提高系统在