【摘 要】
:
随着城市化的持续发展和建筑高度的持续攀升,垂直交通已经是生产与生活中不可缺少的一部分。如何更好地管理垂直交通系统,提升其服务质量成为备受关注的问题。交通系统的优化
论文部分内容阅读
随着城市化的持续发展和建筑高度的持续攀升,垂直交通已经是生产与生活中不可缺少的一部分。如何更好地管理垂直交通系统,提升其服务质量成为备受关注的问题。交通系统的优化离不开对客流规律的分析,因此更加有效、准确地获取客流数据就显得尤为重要。以往的研究中多采用人工测量法来获取电梯交通上行及下行客流数据,而当建筑内存在大量层间客流时,该方式则变得不再适用。针对这一问题,本文利用深度学习中的目标检测方法,对电梯内监控视频中的乘客进行识别,从而达到获取进出客流的目的。在此基础上,利用层间OD(Origin-Destination)矩阵估计模型,对使用电梯的层间客流进行估计,证明了在实际情境下,从监控视频中智能化获取电梯交通流信息的可行性。本文首先介绍了目标检测相关技术的研究现状,通过对准确性及检测速度上进行分析对比,选择了YOLO_V3模型作为客流检测的主要工具。使用自制训练集对模型进行训练,训练后的模型对视频中乘客识别检测的平均准确率可达0.9以上。随后,把检测模型识别的结果,与从监控视频中提取出的其他信息进行整合、清洗和分析,并从中计算出每次电梯停靠进入和离开的乘客人数。最后,提出了基于先验信息的最小二乘-极大熵模型。通过对建筑内乘客出行目的的调查,总结出主要的楼层间OD存在表,并将之作为先验信息。利用先验信息能够确认每次电梯行程中有哪些待估计OD对,从而有效地减少了求解时的计算规模。利用待估计OD与电梯停靠进出乘客之间的关系,建立最小二乘目标函数,并进行求解。根据极大熵原理,在多个可行解中,选择熵值最大的解作为最终的OD估计值。通过在不同规模仿真数据上与其他模型进行比较,证明了本文提出的模型能够在求解时间、绝对误差、精准度以及模型的鲁棒性上都有较好的表现。
其他文献
随着惯性器件、微型传感器等精密微小型系统在航空航天、兵器和医疗等行业的广泛应用,微小型系统的结构与功能愈来愈复杂,对微小型系统的精度要求也越来越高。因此面向微小型结构件的高精度对位装配是目前国内外研究的热点与难点。微装配过程涉及到微夹持技术、精密对位检测技术、微力反馈技术、计算机图形学以及自动控制技术等多种理论,研究的难度大、过程复杂。在微装配领域,国内外的研究虽然已取得了很大的成果,但仍然缺乏成
废弃电器电子产品(WEEE)的回收处理问题日益引起人们的关注。目前,我国的WEEE废弃量大,回收量却不多,拆解处理后的再生利用率也相对较低。面对这一现状,回收处理企业通过创新研发提高WEEE再生利用率成为一项重要的战略选择。为了研究回收处理商的创新研发决策以及政府奖惩机制的影响,本文在双寡头竞争市场的背景下,考虑了技术溢出效应,构建了无奖惩机制下回收处理企业均不创新研发、仅有一个回收处理企业创新研
近些年,在我国职业教育蓬勃发展的背景下,在校学生人数的增长呈几何倍数,大量学生的进入,给高职院校一直以来沿用的传统学生管理方式带来了很多问题,核心问题就是目前高职院
随着汽车工业对节能减排和安全性能要求的日益提高,高强钢的热冲压技术被广泛的应用到汽车的结构件和安全件制造。传统热冲压工艺得到的完全马氏体零件,强度高但延伸率低,不能满足碰撞中吸收能量的安全性要求。因此,为了解决零件力学性能与车身安全性能要求相匹配的问题发展出了与车身安全性要求相适应的高强钢的热冲压TTP(Tailored Tempering Properties)工艺,即在零件的局部区域力学性能不
随着计算机技术的不断提高和医疗技术的新需求,学者们不满足于当前的病因诊断方法:医护人员通常根据自己的医学知识对抽象的2D医学切片图像进行病因判断。这种方法仅依赖于医
随着互联网技术的进步,大数据时代的来临,受教育者自主学习的能力也在不断提升。传统以灌输为主的思想政治教育方式呈现出了种种弊端,难以适应当前时代对思想政治教育提出的
基于基因表达数据,从海量基因中选择疾病相关基因对理解疾病的发生发展、促进疾病诊断和治疗具有重要意义。目前大多研究工作基于基因表达差异寻找疾病基因,难以发现差异表达
医用植入电子设备在维护生命健康领域发挥了重要的作用,然而发展医用植入电子设备的关键是建立安全可靠稳定的电源供给系统。葡萄糖是生物内源性物质,葡萄糖燃料电池可以直接利用生物体内含的葡萄糖获取电能,从而可以为医用植入电子设备提供能源。另外,葡萄糖也是自然界一种储量丰富、清洁、无毒的生物物质。以葡萄糖为燃料进行发电是一种有效的新能源技术。构建葡萄糖燃料电池的核心是选择合适的葡萄糖氧化的阳极催化剂。本文制
有机无机杂化钙钛矿材料由于其具有消光系数高、载流子扩散长度长、能带可控、合成简易、成本低等独特优势,使得应用这种新型吸光材料的钙钛矿基太阳能电池(PSC)得到了科研人员的广泛关注,其光电转换效率(PCE)达到了23.7%。目前,所有经第三方验证的高效率PSC均采用TiO_2为致密层或纳米多孔载体层。大量研究表明太阳光的紫外成分会使这类PSC中钙钛矿材料发生分解,导致PSC的光稳定性降低。然而,目前
基于铁电薄膜材料与半导体集成而发展起来的集成铁电学及相关器件研究是微电子技术、凝聚态物理和材料科学等学科的交叉前沿。第三代宽禁带半导体氮化镓(GaN)因其具有宽禁带宽度、高热导率、高击穿场强、高饱和电子漂移速率等诸多优良半导体特性而受到了广泛关注。其中,利用铁电栅替代传统介电栅构筑GaN基集成铁电结构,开发增强型GaN基高电子迁移率晶体管是重要研究方向。因此,铁电薄膜与GaN半导体的外延集成及器件