红外与可见光图像融合算法研究

来源 :昆明理工大学 | 被引量 : 0次 | 上传用户:muscleprince
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
图像融合的目标是将来自同一场景的多幅源图像的互补信息进行融合,生成高质量合成图像。红外图像反映的是目标在红外热辐射下的能量分布,不易受风沙烟雾等复杂条件影响,但其可视性并不是很理想,特别是物体纹理细节信息表现较差。可见光图像主要与目标场景的光反射有关,物体辨识度高,但容易受到外部环境的影响,特别是被遮挡时就无法准确地捕捉目标特征信息。所以,红外与可见光图像融合能够综合两种成像的优势,通过结合二者的互补信息,更好地提升场景的分辨率和捕捉目标特征能力。为了提升红外与可见光融合图像质量,本文主要针对多尺度变换、脉冲耦合神经网络、卷积稀疏表示以及拉普拉斯能量法进行了研究,主要的创新工作与贡献如下:(1)针对非下采样剪切波变换(Non-subsampled Shearlet Transform,NSST)低频部分信息融合度低,传统稀疏表示(Sparse Representation,SR)容易产生“伪吉布斯”效应和脉冲耦合神经网络(Pulse Coupled Neural Network,PCNN)模型设置参数复杂的难点,本文提出了基于自适应稀疏表示(Adaptive Sparse Representation,ASR)以及参数自适应脉冲耦合神经网络(Adaptive Pulse Coupled Neural Network,PA-PCNN)模型的NSST域红外与可见光图像融合算法(简称为:NSST-ASR-PAPCNN算法)。该算法首先通过NSST将源图像分解成低频子带和高频子带。然后,使用自适应稀疏表示(ASR)模型进行NSST域低频部分稀疏系数的融合;同时,采用参数自适应脉冲耦合神经网络(PA-PCNN)模型融合相应的高频部分。最后,对融合后的低频和高频波段进行NSST反变换,重建得到融合结果图。实验结果表明:该算法解决了传统SR模型的“块效应”问题,克服了PCNN模型中自由参数的设置难点,在主观视觉和客观评价上均优于部分现有的常见算法。(2)针对非下采样轮廓波变换(Non-subsampled Contourlet Transform,NSCT)低频部分稀疏性弱,传统稀疏表示的“滑窗”操作破坏图像间联系使得融合结果特征信息损失严重的缺点,本文提出了基于卷积稀疏表示(Convolutional Sparse Representation,CSR)和能量特征的NSCT域红外与可见光图像融合算法(简称为:NSCT-CSR-LLE算法)。该算法首先对源图像进行NSCT分解,并将NSCT域低频子带通过高斯滤波器分解成低频基础分量和细节特征分量两部分,相应部分分别采用局部拉普拉斯能量法(Local Laplace Energy,LLE)以及卷积稀疏表示进行融合,再结合得到低频子带融合图像,在高频部分,根据底层视觉特征通过构建新的活性度量方法来融合高频子带,最后,对低频和高频子带融合图像进行NSCT反变换重构得到最终的融合图像。实验结果表明:该算法解决了稀疏表示模型的伪Gibbs效应,有效地提取了源图像的边缘细节信息,提升了图像的整体视觉效果。
其他文献
近年来,随着互联网技术的迅速发展,众包模式在各行各业得以应用。众包作为一种面向互联网大众的问题解决机制,聚合大众智慧以更好地解决问题。在众包场景下,众包任务和工人拥有不同需求及意愿,将众包任务分配给与其需求不相符的工人会影响众包任务的完成质量。同时,在众包发包者与工人进行交互的过程中,分配结果可能随着分配双方发现更好的合作对象而有所变更,从而出现无效分配影响分配结果的稳定性。因此,如何有效地将众包
眼底视网膜血管图像作为人体唯一一处不需要侵入性手段就可以获得的血管图像,具有较高的临床价值。眼科以及内科的专家可以根据视网膜血管呈现的不同特征,较为精准的判断多种疾病。然而,在实际的应用中,由于视网膜血管结构复杂以及采样光照和成像设备的影响,常常导致眼底血管图像难以观察,增加了医生的工作难度。因此,研究出一种自动化的高精度视网膜血管分割算法,对于目前的临床辅助诊断非常重要。本文基于深度学习技术对视
供水系统作为城市的基础设施,水质质量直接影响人们的用水安全。在净水厂处理工业中,混凝沉淀是水处理系统的重要工序,决定着水厂出水质量和制水成本,其中混凝剂投加量的控制是关键。由于进入净水厂原水水质地波动,净水厂混凝投药过程存在较大的时滞性,很难及时且精准的计算投药量。因此,对水厂混凝投药系统进行建模,来预测投药量,对保证供水质量安全、降低能耗十分有意义。本研究通过径向基(RBF)神经网络预测模型对水
阿尔茨海默症(Alzheimer’s Disease,AD)是最常见的神经退化疾病之一,严重危害患者的生命健康。核磁共振成像(Magnetic Resonance Imaging,MRI)和正电子发射计算机断层成像(Positron Emission Tomography,PET)可以分别提供大脑的结构与功能信息。国内外最新研究表明,结合同一受试者的MRI和PET图像将有助于提升AD辅助诊断的准确
车联网(Internet of Vehicles,IoVs)是物联网在智能交通领域的重要组成部分,利用车联网技术为车辆提供事故预警消息对于减少或避免次生事故的发生、提高交通安全具有重大意义,是当前车联网应用的研究热点之一。高速公路上由于车辆行驶速度快、车辆位置频繁变化等,导致车间信道条件差、传输不稳定,使得事故预警消息的分发面临严峻挑战。此外,将事故视频作为预警消息进行传播时,能够提供传统文本消息
行人重识别(Person Re-Identification,Re ID)旨在通过非重叠相机采集到的图像中找到与查询图像身份相同的行人,它通常也被认为是图像检索的子问题。近年来随着深度学习的兴起,行人重识别技术在智能监控、安防等领域得到广泛地发展及应用。现有的大多数行人重识别算法都是在同一数据集上进行有监督的训练后再测试,这类算法虽然性能较高,但是极大的限制了其可扩展性。在现实场景中,通常需要将训
海洋资源的开发利用是未来发展的战略重地,因为水下环境恶劣,人们通常借助水下机器人进行海洋探索,通过对水下视频和图像的研究分析,实现海底考古、海洋军事勘察、海洋牧场养殖、海洋环境监测、海洋生物保护等任务。水下拍摄环境复杂恶劣,大量噪声和失真的产生使拍摄的图像质量低下,导致关键特征信息丢失,因此如何获得高质量的水下图像显得尤为重要。为了获取高质量的水下图像,本文针对常见的自然光照下浅海图像和人工补充照
近几年,随着人工智能技术的广泛应用,句法分析等深层自然语言分析的关注度越来越高。句法分析的主要任务是分析一个句子的构成,并使其可以转化成句法树。通过句法分析,可以解析一个句子的构成词块,词与词之间的关系,从而帮助机器理解自然语言,并运用于机器翻译、自动问答、文摘生成等语义理解领域中。句法分析是自然语言处理的一个经典任务,本文主要研究汉语层次句法分析中的边界问题。首先通过剖析短语结构的层次句法分析的
古代石刻文献在我国历史文化研究中向来都是一项不可或缺的研究内容,具有重要的史料价值,但由于自然环境的侵蚀或是人为破坏,石刻文献的表面出现了若干大小不一、分布不均、形状多变的干扰区域,这不仅影响了人们的观感需求,而且对历史研究造成阻碍。信息化时代的来临,可将重要的石刻文献进行数字化储存以延长文物保存时间,也可通过网络共享的方式对石刻文献进行二次传播,打破时间地点的限制,增加古代历史文化的受众面,使用
芒果表皮缺陷检测是实现芒果的智能化采摘、果实质量分级的重要前提。基于卷积神经网络的计算机视觉技术为缺陷检测提供了可行有效的方法,是目前最为主流的检测方式。在自然环境下,光照的强弱、背景的复杂、果实枝叶茎干的相互遮挡等制约因素下,给芒果表皮缺陷的检测带来了巨大的挑战。采用深度卷积神经网络,可以提取更多的特征,具有更加实时精准的识别效果。因此,本研究采用基于语义分割、实例分割的方法研究自然环境下芒果表