局域表面等离子体纳米光刻原理与方法研究

来源 :中国科学院研究生院(光电技术研究所) | 被引量 : 2次 | 上传用户:auiadufzxyw
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
局域表面等离子体(Local Surface Plasmon,LSP)纳米光刻技术以简单的系统结构、灵活的刻写方式、无需掩模以及超越衍射极限的分辨力等优势成为纳米光刻技术领域的研究热点。所谓LSP纳米光刻技术,即通过利用长波长光源照明亚波长尺寸的探针或小孔,在探针或者小孔与介质的界面处激发LSP,LSP在探针针尖或者小孔间隙处急剧振荡形成LSP共振,利用表面等离子体(Surface Plasmon,SP)的短波长特性获得超衍射聚焦光斑,并将其应用到超衍射纳米光刻中。然而在基于LSP共振纳米光刻中,由于LSP振荡产生的携带高频信息的倏逝波仅在激发结构的表面传播,在垂直于激发结构表面方向上以指数形式衰减,这就要求在LSP纳米光刻中,激发结构与光学记录介质的距离必须在几个纳米的范围内,而这必然带来距离控制的难题。同时倏逝波在垂直结构表面方向指数衰减的场分布也会导致纳米光刻图形曝光深度浅、对比度低、边缘模糊的问题。这限制了基于LSP纳米光刻技术进一步走向应用。针对这些问题,本论文从研究用于激发LSP的领结型Bowtie结构的电磁场特性与共振行为出发,将Bowtie小孔结构与金属-介质-金属结构相结合,提出了一种基于LSP共振的增强型纳米光刻结构,通过对LSP及其共振行为的操控,得到了深度拓展、尺寸压缩、强度增强的聚焦光斑。本文的主要创新点有:1、研究分析了基于Bowtie小孔的LSP纳米光刻的透射增强原理及光刻质量的影响因素。2、提出一种新型的Bowtie(B)+金属(M)-电介质(I)-金属(M)的增强型纳米光刻结构,并通过理论仿真获得了最小特征宽度为28nm,曝光深度为30nm的聚焦光斑,相对于传统基于Bowtie的光刻结构将焦斑尺寸压缩了近67%。3、开展验证实验,获得了最小特征宽度为31nm的光刻结果,同时相对于传统Bowtie光刻结构,将30nm到100nm特征尺寸范围内的曝光图形深度提升了近5倍。验证了这种增强型光刻结构在压缩焦斑尺寸、提升曝光深度上的显著效果。
其他文献
随着集成电路技术的不断发展,晶体管特征尺寸不断缩小。目前,硅基半导体器件的特征尺寸已经接近了其物理极限。采用高k介质与金属栅材料的III-V族MOS器件具有高载流子迁移率、
飞秒激光加工具有材料适应性广、非接触、无机械剪切应力、精度高、无污染、高效率等优点,是最理想的微加工手段之一。本文用飞秒激光加工TiC陶瓷,研究了能量密度、重复频率、
随着当代通信学科在各个领域的广泛应用,人们对于通信技术的依赖程度也越来越高。而微波光子学是一门将微波信号应用于光信号处理单元的交叉型学科,其在光纤通信网络,宽带接
近年来,非接触测头的发展十分迅速,成为探测技术的一个重要的发展方向。新型激光扫描共焦测头的设计和研究基于激光扫描共焦显微检测法原理,运用了动态主动调焦的方法,能够满
随着无线通信系统的应用范围愈来愈广,无线通信频谱资源变得越来越拥挤,需要采用非恒包络调制方式提高频谱使用效率,这就需要对功率放大器进行线性化处理。数字预失真因其高
以侧边抛磨光纤为导波载体,利用光纤抛磨区的倏逝场来激发表面等离子体共振效应(Surface Plasmon Resonance,SPR)制成的新型传感器,具有灵敏度更高、集成性好、能够实现实时
随着工业现代化的深入发展,各种非线性负荷的使用方便了人们的生产与生活,但同时大量谐波电流源的引入对配电网电能质量造成了非常严重的影响。并联型有源电力滤波器作为一种
基于人权主体的极大广阔性和受刑人权益的脆弱性,适度保证和逐步倾斜对受刑人员权利的人文关照,不啻于制度和观念界面的双重突进。自09年云南晋宁"躲猫猫"事件肇始,服刑人员
氧化锌(ZnO)作为第三代半导体材料,由于其禁带宽度大,可以广泛的应用于制造蓝绿光和紫外光的光电器件,同时还具有电子漂移饱和速度高、介电常数小等特点,因此,成为当下半导体
发光二极管(LED)正逐步取代传统光源,市场对LED功率需求逐渐加大,而传统封装导致LED散热瓶颈,限制了大功率LED发展。LED的热量主要由芯片向下传导,经过封装基板导向热沉,因此