论文部分内容阅读
脂质作为细胞生物膜结构的主要组分,对环境变化高度敏感,在微藻响应环境胁迫过程中发挥着重要作用。氮胁迫条件下藻细胞将进行全局代谢响应并积累储能化合物,如甘油三酯(TAG),TAG积累途径包括叶绿体和内质网途径,与极性甘油酯密切相关,而极性甘油酯特异性分布于各种细胞器中。本论文以模式微藻莱茵衣藻(Chlamydomonas reinhardtii)为研究对象,基于甘油酯组分析平台与完整叶绿体提取技术,系统阐明了氮胁迫不同时期内TAG积累与各极性脂的响应特征,研究了自养和兼养培养方式对TAG合成与各极性脂代谢的影响,对各极性脂在TAG积累不同阶段的贡献进行了评价。建立了莱茵衣藻甘油酯组定性定量分析平台。首先利用TLC和GC确定了极性甘油酯种类及其脂肪酸组成,再利用UPLC-ESI-Q-Trap/MS的一级质谱扫描和UPLC-ESI-Orbitrap/MS2的二级碎片信息扫描,共鉴定出109种极性甘油酯分子,并通过外标法在UPLC-ESI-Q-Trap/MS的多级反应监测模式下对其中45种分子进行了靶向定量。此外基于中性脂TAG的含量与特征脂肪酸的相对或绝对含量之间的线性相关性,扩展了微藻TAG的快速定量方法。针对胁迫条件下叶绿体提取困难导致微藻TAG积累机制无法从亚细胞水平深入研究的难点,首次从氮胁迫4h自养生长的莱茵衣藻中成功提取出完整叶绿体,建立了基于脂肪酸标志物的叶绿体完整度和纯度评价标准。亚细胞脂质组分析表明氮胁迫4 h时TAG只在叶绿体外积累,甜菜碱脂DGTS和糖脂DGDG还分别存在于叶绿体内和叶绿体外区室,新合成的DGDG和DGTS主要在叶绿体外分别以DAG和酰基形式参与TAG的合成,叶绿体膜脂MGDG主要以DAG形式参与叶绿体外TAG的合成。比较了自养和兼养生长的莱茵衣藻甘油酯组对氮胁迫的响应差异,发现两种培养方式下藻细胞各甘油酯含量及其脂肪酸组成差异不大。氮胁迫期间,各极性脂含量均先增加后减少,极性脂主要组分由MGDG转为DGDG和DGTS,流向极性脂的碳分配比例发生变化,0~4h和4~24 h内分别主要流向DGDG和DGTS,而24~48 h内碳流至极性脂的比例减小,这表明了新合成DGDG和DGTS在胁迫期间的重要调控作用。兼养生长的莱茵衣藻在整个氮胁迫期间,源自其极性脂的多种PUFA在被合成的同时还通过MGDG、DGDG和DGTS向TAG持续转化,使得基于PUFA的极性脂转化途径对TAG积累的贡献度逐渐增加,其中DGDG和DGTS是对含多不饱和酰基TAG积累的主要贡献者。