论文部分内容阅读
纳米晶复合永磁材料是由硬磁相和软磁相在纳米尺度内,通过两相间的交换耦合作用复合而成,它由硬磁相提供高的矫顽力,软磁相提供高的饱和磁化强度,具有高剩磁、高最大磁能积以及低稀土含量等优点,有望发展成为新一代高性能的稀土永磁材料。为改善纳米晶复合永磁合金的微观结构以提高磁性能,本论文从合金成分的优化和晶化工艺的改进两个方面,对纳米晶复合Nd2Fe14B/α-Fe永磁合金进行了较为深入的研究。通过采用X射线衍射(XRD)、差示扫描量热仪(DSC)、透射电镜(TEM)、三维原子探针技术(3DAP)、振动样品磁强计(VSM)和穆斯堡尔谱仪等分析仪器和手段,重点研究了微合金化元素Zr、Nb、Ga对纳米晶复合Nd2Fe14B/α-Fe永磁合金的晶化行为、微观结构、磁性能及其温度稳定性的影响规律和作用机理.通过对快淬Nd2Fe14B/α-Fe永磁合金进行脉冲磁场退火,探讨了磁退火对合金的晶化过程、交换耦合作用、显微结构以及磁性能的影响机制,寻求到一种新的有效提高纳米晶复合永磁材料磁性能的晶化工艺方法。本文的主要研究结果如下:在纳米晶复合Nd9.5Fe79-xCo5ZrxB6.5(X=0~4)合金中,Zr元素的添加优化了合金的晶化过程,抑制了软磁相晶粒的长大,改善了材料的微结构,从而增强软、硬磁相之间的交换耦合作用,有效提高合金的磁性能。同时,Zr在一定程度上提高了磁体的温度稳定性,改善了磁体的不可逆磁通损失。制备的纳米晶复合Nd9.5Fe76Co5Zr3B6.5粘结磁体的温度系数α=—0.13%/℃,β=—0.35%/℃,在150℃环境温度下时效100h后,磁体的不可逆磁通损失δim=—4.50%。Nb元素的添加,明显提高了纳米晶复合Nd9.5Fe79-xCo5NbxB6.5(X=0~3)合金的矫顽力,细化了合金晶粒尺寸,从而有利于减小材料内部的散磁场,改善了合金的温度稳定性。3DAP研究结果发现,在纳米晶复合Nd9.5Fe77Co5Nb2B6.5永磁合金中,添加的Nb原子在晶间产生明显的富集,形成了晶间NbFeB相,从而增强了硬磁相的磁晶各向异性场,提高了合金的磁性能。在纳米晶复合Nd8.5Fe77.6-xCo5Zr2.7GaxB6.2(X=0~1)永磁合金中,添加微量的Ga元素后,提高了合金的居里温度,从而改善合金的温度系数和不可逆磁通损失。快淬速度为18m/s的合金经710℃退火处理,制备的纳米晶复合Nd8.5Fe77Co5Zr2.7Ga0.6B6.2粘结磁体具有优异的磁性能,Jr=0.73T,iHc=643kA/m,(BH)max=82kJ/m3,α=—0.095%/℃,β=—0.35%/℃,δim=—4.06%。对快淬非晶Nd8.5Fe77Co5Zr2.7Ga0.6B6.2合金进行脉冲磁场退火发现,同常规退火相比,磁退火降低了合金的最佳退火温度,提高了非晶晶化时的形核率,改善了合金的微结构,从而增强了软、硬磁性晶粒间的交换耦合作用,明显提高了合金的磁性能,经670℃磁退火后合金具有最佳的磁性能,即iHc=586kA/m,Jr=1.01T,(BH)max=138kJ/m3,最大磁能积比常规退火提高15%。对Nd8.5Fe77Co5Zr2.7Ga0.6B6.2合金在居里温度以下进行脉冲磁场退火发现,磁退火后样品的磁性能明显提高,尤其是剩磁和最大磁能积,其中最大磁能积较常规退火最大可提高24.8%。利用脉冲磁场在合金的居里温度以下进行退火为制备高性能纳米晶复合永磁材料提供了一种新的工艺方法。