论文部分内容阅读
奶制品因其含丰富的营养物质在全球范围内被人们所喜爱,然而它也是微生物繁殖的天堂,容易被细菌污染,从而引发诸多食品安全问题。检测奶制品中常见的食源性病菌,对于控制食源性疾病的爆发具有重要意义。传统的微生物检测方法主要是依靠培养基培养、生化血清鉴定、形态特征观察等,这些方法步骤繁琐,周期长,无法定量以及无法同时检测多种致病菌。为此,急需建立一种快速有效、通量高、且能准确定量的检测方法,以满足目前的发展趋势。本研究旨在建立一套能同时检测7种食源性致病菌,且能运用于不同实际样品的MT-PCR检测方法,同时通过人工染毒的方法模拟样品,评估该方法的实用性并运用于实际工厂采样的分析检测中。主要研究内容及结果如下:1.MT-PCR检测方法的建立选取阪崎肠杆菌的OmpA基因、单核细胞增生性李斯特菌ORF2819基因、大肠埃希菌的uidA基因、金黄色葡萄球菌的Nuc基因、鼠伤寒沙门氏菌STM4497基因、蜡样芽孢杆菌nheA基因、福氏志贺氏菌的RFC基因构建多重串联实时荧光定量PCR体系同时检测7种食源性致病菌;特异性实验及标准曲线表明,该方法具有良好的特异性及扩增效率。同时对该体系的关键点—第一轮循环数进行优化,并与普通荧光定量PCR结果比较发现,当第一轮循环数大于15时,扩增效果要优于普通荧光定量PCR,但考虑到循环数越多,非特异性扩增产物也随之增多,因此将最佳循环数定为15。在最佳循环数下,该方法能同时检测出10-3 ng/μL的金黄色葡萄球菌的DNA,10-4 ng/μL的单核细胞增生性李斯特菌,其余5种菌种的检测下限均达到10-5 ng/μL。2.MT-PCR检测能力的评估为了评估MT-PCR的样品检测能力,采取人工染毒的方法,将7种目标菌种的十倍系列稀释液同时人为加入到无菌水、无菌婴儿配方奶粉、瞬时高压灭菌牛奶中作为待测样品进行检测。结果表明,在无菌水中该方法能够检测出101 CFU/mL的7种目标菌种;在瞬时高压灭菌牛奶中可以检测出102 CFU/mL的7种目标菌种;在无菌婴儿配方奶粉中,单核细胞增生性李斯特菌和金黄色葡萄球菌能检测到102 CFU/g,其余菌种均能检测到103CFU/g。3.MT-PCR在运用在实际工厂检测中为了将该方法运用到实际检测中,本研究对广州某婴儿米粉工厂进行实地采样,用该方法对工厂样品进行检测分析,并与第二代测序结果及传统微生物检测分析进行比较。结果表明,该工厂存在易被忽略的污染点,例如鼓烘中的WPS风管中的残粉,该采样点微生物丰度高,难以拆卸清洗并且长时间累积残粉,是易爆发微生物污染的区域。通过比较三种检测方法得出,传统微生物检测方法仅能初步的判断出该采样点是高风险区域,无法明确定量检测出污染的细菌数量及种类,同时耗时长;第二代高通量检测技术通量高,检测出残粉、水样中的微生物种类及丰度,但无法具体定量微生物;而多重串联实时荧光定量PCR能够准确的判断出关键污染的微生物,同时能够对这些微生物进行定量,最终发现金黄色葡萄球菌仅存在于粉尘样品37号和P号中,菌落数分别为278 CFU/g、266 CFU/g;4号生产线地漏涂抹样4-2及水样4号、1号生产线地漏涂抹样6-2及水样6号、粉尘样品P号和37号均存在大肠埃希菌,菌落数分别为1.8×105 CFU/g、2.9×105 CFU/mL、3.7×104 CFU/g、4.6×105 CFU/mL、5.2×105CFU/g、4.4×104 CFU/g;除4号、37号样品外,4-2、6-2、6、P样品均存在福氏志贺氏菌,菌落数分别为432 CFU/g、912 CFU/g、623 CFU/mL、884 CFU/g。