基于飞机伤痕检测服务的高并发性能研究与应用

来源 :北京邮电大学 | 被引量 : 0次 | 上传用户:bravehearterdoctor
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
飞机表面蒙皮伤痕是威胁飞行安全的一大主因,因此,航空公司在飞机转航停场期间对蒙皮伤痕进行检测是保障飞行安全的重要工作。目前较为先进的检测方法是基于计算机视觉的伤痕检测法,该方法将采集到的飞机蒙皮图像传输给伤痕检测服务,进行基于人工神经网络的图像处理以识别伤痕类型及位置信息,从而判断蒙皮受损程度,保障飞行安全。由于检修飞机数量多、检修时间短,该方法在图像传输、处理过程中需要进行大量的数据传输和计算。故如何在飞机转航停场期间保证伤痕检测的实时性、高效性是至关重要的。本文正是针对某具体航空公司的实际项目,在转航停场期间,对基于图像识别的伤痕检测服务的实时性、高效性需求,研究高并发性能方案。由于航空公司对于数据具有较高的安全性及隐私性要求,不能借助公网的云平台来进行高并发性能服务的发布,因此论文从单机分布式计算、动态负载均衡、服务平台部署以及多机分布式扩展角度展开工作,具体完成如下工作:一、针对支持高效运行服务平台的部署问题,从硬件部署及软件调度两方面展开。设计了一种单机多卡分布式处理方案,并提出了基于多进程模型的多卡分布式处理方案。为了解决用户请求的离散性,提出了基于业务流量的动态自适应封装策略,以提高事务处理效率。二、针对任务分发过程中集群节点负载不均衡导致检测服务并发量较低的问题,提出了基于集群性能的动态负载均衡策略,设计并实现性能采集模块、算法模块、负载均衡模块,实现任务的动态分发,保证节点之间的负载均衡,从而提升伤痕检测服务的并发量。三、针对多机分布式扩展过程中面临的扩展困难、上线繁琐问题,设计了基于容器化技术的多机分布式扩展方案,实现检测服务的水平扩展。并以Docker作为底层容器化技术,设计了一整套持续交付、自动化管理的生产构建框架。论文采用并发性能测试工具模拟真实环境中的检测请求,针对一、二工作内容设计相应的实验,进行了对照测试,通过QPS(Queries Per Second)指标验证上述方案的有效性和优越性,且在采用了本文提出的封装策略之后,伤痕检测服务的QPS最高提升了 32.33%。
其他文献
随着社会的高速发展,物联网、大数据等技术的不断升级,信息化得到越来越多企业的高度重视,然而在信息量呈指数增长的同时,基础数据的统一、完善显得尤为重要,因此越来越多的企业开始进行主数据治理和主数据系统项目。论文以X公司主数据系统项目为研究背景,结合项目风险管理的理论体系,在国内外风险管理研究的基础上,进行主数据系统项目的风险管理研究,主要内容有:一、简述论文研究的实际项目,即X公司主数据系统项目的项
如今正是互联网高速发展的时代,各项互联网技术层出不穷。物联网技术建立物体与互联网的联系,AI技术促进生活的智能化,大数据技术挖掘数据更深层次的价值。这些技术也标志着未来是“互联网+”的时代[1-2]。因此,新时代下信息的传递显得尤为重要,需要建立在一个稳定可靠的通信系统上。而光纤通信系统无疑能够很好地适用于这些场景。得益于光通信频带宽、损耗低、抗电磁干扰等特点,未来的通信网络发展方向必定是大容量、
网络异常流量检测是抵御恶意攻击、保护网络可用性和隐私安全的重要手段,对于维护网络安全有着至关重要的作用;而基于流量分类的方法是网络异常流量检测任务中的重要方法之一。近年来,基于表征学习的流量分类方法由于无需人为提取特征、检测速度快且在特定环境下表现优异,因此受到了研究者的广泛关注。但是在部署基于表征学习的异常流量监测模型时,单一网络域内面临着数据不足、标注能力不够、难以检测未见过的异常流量、且原始
学位
随着当代互联网技术的不断革新,越来越多的单位使用互联网软件传输机密数据。互联网应用的不断深入和扩展,也为计算机网络带来越来越多的安全隐患。本系统旨在设计并实现匿名、安全的文件传输管理系统,为用户提供好友管理、群组管理、匿名聊天、文件传输等功能。在Tor(The Onion Router,洋葱路由器)网络中,用户借助匿名通信技术,多层加密通信数据,让流量监控无法嗅探到用户数据和用户身份信息,维护文件
相较于传统的在远端云中心进行数据处理的方式,移动边缘计算(Mobile Edge Computing,MEC)通过将计算和存储能力下沉到网络边缘,提供了高带宽低时延的网络环境,从而能够提高时延敏感业务的服务质量。作为MEC的关键使能技术之一,网络功能虚拟化(Network Function Virtualization,NFV)支持将网络功能与底层硬件资源解耦,在统一的物理基础架构之上配置虚拟网络
由于无线通信设备的增长和网络技术的发展,对频率的需求不断增长。为了在有限的频率资源环境中有效地共享频率,应该进行研究以开发频谱共享技术。传统的频谱共享研究依靠中央机构来验证每个频谱共享交易的真实性,缺少安全的频谱共享机制,这容易受到众多的安全威胁。其次,通过频谱感知,或频谱数据库进行的传统频谱共享机制使用效率并不是很高。最后,由于同频道干扰和其他干扰,自私且理性的频谱所有者不愿在没有适当经济补偿的
近年来,互联网技术快速发展,各类信息剧增,互联网上每天有海量信息在生成、传播和存储。作为人的标识之一的人名,在互联网检索中有非常重要的意义。但由于人口巨多,人名数量巨大,使得进行人物相关文章的搜索时,重名现象严重,搜索引擎不能达到预期的效果,返回的内容中包含大量噪声信息,需要用户去进一步的识别、筛选,这就使用户检索信息的难度大大增加。因此如何设计一个系统,能高效识别人物,消除人名歧义,节省用户搜索
随着工业互联网的发展,带来终端传感设备数量激增,传输与存储的数据呈现爆炸式增长,企业、机构通过数据挖掘能够进行一系列的分析、预测,但传感数据普遍存在数据质量高低不齐的现象,若直接使用,将造成信息的误判,经济、时间等损失。因此应找到一种合适的数据质量评估方法,对数据质量进行评估,让后续的分析、预测等操作有一个良好的数据质量保障。本文研究了数据质量评估的主流方法,重点分析了基于机器学习的数据质量评估法
票房作为衡量电影能否盈利的重要指标,受诸多因素共同作用影响且其影响机制较为复杂,电影票房的准确预测是比较有难度的。目前电影票房预测的研究存在依赖社会媒体舆论信息、影人价值量化方式单一、没有挖掘影人合作关系价值等不足。尤其如果要在电影上映前给出预测,基于社会媒体评论和舆论热度的票房预测方法难以应用。本文提出了一种基于 GBRT(Gradient Boosting Regression Tree)和关