基于元路径的异质社交网络实体锚链接识别技术研究

来源 :哈尔滨工程大学 | 被引量 : 0次 | 上传用户:daiap
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着网络技术的迅猛发展,用户可以在日常生活中同时使用多个在线社交网络享受服务。与此同时,社交网络服务平台种类繁多,逐渐形成一个庞大的社交网络结构。从整体来看,大多数的社交网络都是异质社交网络,异质社交网络中的实体主要包括用户、位置、文本等。异质社交网络实体锚链接识别可以推动社交网络的发展,并不断完善社交服务平台,是社交网络中的重要研究内容。本文主要针对异质社交网络中的用户和位置这两类实体的锚链接识别技术展开研究。首先,针对异质社交网络用户锚链接识别问题,本文基于用户的链接关系和属性信息,提出了基于元路径的用户锚链接识别算法。用户实体除了具有用户间直接链接关系和固有属性外,还具有由社交活动而产生的用户间间接链接关系和间接属性。本文通过元路径技术充分挖掘由用户社交活动而产生的间接链接关系和间接属性,比较不同网络间用户链接关系的模式一致性,并使用不同的相似度计算方法度量用户间属性信息的相似度。实验表明,本文提出的基于元路径的用户锚链接识别算法具有更高的准确率。其次,针对异质社交网络位置锚链接识别问题,本文提出了基于元路径的位置锚链接识别算法。当前关于位置实体的锚链接识别研究较少。与用户实体不同,位置实体不具有主观能动性,在异质社交网络中位置实体间的链接关系相对固定,其本身具有的属性信息也不够丰富,因此位置锚链接识别较为困难。本文结合少量锚链接用户的先验知识,通过元路径技术挖掘位置被用户签到的关系,在此基础上结合位置的属性信息,建立位置锚链接识别模型。通过实验证实本文提出的基于元路径的位置锚链接识别算法具有较高的准确率。
其他文献
三维石墨烯虽然具有快速的充电速率、长的循环寿命、丰富的孔径结构和高的电导率等优异性质,但由于其比电容较低,较大程度的制约了其在超级电容器中的应用。将聚苯胺(PANI)与三维石墨烯复合可以提高其比电容,但由于聚苯胺与石墨烯的界面接合较弱,这会影响该类复合电极材料的电化学性能。针对这一问题,本文提出采用功能化修饰方法,用氨基(-NH2)、磺酸基(-SO3H)对三维石墨烯进行表面功能化修饰,调控聚苯胺与
近年来,随着智能手机与平板电脑等移动设备的普及,运行在移动设备上的应用程序(app)的数量也急剧增加。目前,移动设备上的移动应用程序市场内已经拥有数百万的移动应用。如此规模的移动应用的维护对于开发人员来说是一个巨大的挑战。开发人员通常需要通过软件维护方法来保证移动应用程序的质量,从而提高用户的满意度。他们通常会提交问题报告来描述在使用应用程序的过程中出现的缺陷,功能请求和其他更改。标签(例如,缺陷
随着旋转机械大量应用于电力、石化冶金以及航空航天等工业领域,其设备安全问题由于关乎人民群众的生命财产安全,逐渐成为国内外学者关注的焦点,其中由于转子不平衡以及不平衡引发的其他故障最为常见,约占总故障的70%。现如今随着工业4.0智能化工业的高速发展,基于大量工业数据的故障诊断技术层出不穷,以数据驱动的智能故障诊断方法以其高效快速的特点逐渐成为一颗冉冉升起的新星。本文以转子不平衡故障为研究对象,采用
随着存储数据的剧增,系统中的数据失效情况频发。现有的容错手段主要包括副本冗余和纠删码两种,纠删码因其具有相较副本存储开销小的优点成为存储系统中重要的容错策略,数据重构是纠删码解决问题的重点,其针对重构技术的研究主要从编码方案和重构过程两个方面展开。纠删码中的分组码通过将数据块分组降低数据重构时读取数据量,编码结构简单,但现有分组码各分组之间由于关联性差会导致容错率降低等问题,且目前关于分组码在重构
机器人自主定位和导航是机器人领域的一个重要研究方向。机器人定位方式又可分为局部定位(如基于马尔科夫链的SLAM(Simultaneous Localization And Mapping)里程计的相对位置的确定)和全局定位(如有额外的地图辅助的绝对位置确定)。局部定位方式因其定位原理会造成定位误差累积;而地图包含环境中目标的精确位置信息,能够提供可靠的绝对位置。地图现有形式中,栅格地图、拓扑地图等
钇稳定氧化锆(Yttria stabilized zirconia,YSZ)基固体电解质传感器因具备抗水蒸气干扰能力强、选择性好、响应快、结构简单、寿命长等优点,近年来成为挥发性有机物(Volatile Organic Compounds,VOCs)气体检测方面的研究热点。但是从国内外的研究中可以发现,基于氧化锆电化学气体传感器对甲醛气体的灵敏度较低,距实现室内痕量甲醛气体的有效检测还存在一定的距
互联网的迅猛发展,促进了互联网广告业的发展,网络广告占据了整个网络,如今大多数网站都或多或少包含某种广告。广告虽然可以为网站或企业带来收益,但是也给网络用户获取有用信息造成了干扰,因此,研究如何识别网络中的广告具有十分重要的意义。对于目前广告商使用较多的图片广告和文本广告,已有的图片广告识别大多通过规则匹配来完成,需要经常更新规则,实时检测的效率还需提高,基于多维特征的识别方法,特征提取较为复杂;
智能汽车作为缓解当前交通压力的重要方式,凭借事故率低,能源消耗少,驾驶舒适性高等优点,逐渐成为高校与企业的研究热点。随着智能汽车研发推进,其应用场景日益复杂,安全舒适性需求不断增加,且受限于早期车载传感器种类单一,模型参数化方案缺少模仿人类驾驶潜力,早期智能驾驶研发主要追求辅助驾驶功能实现,缺乏模仿人类驾驶的项目研究,故为完善“人-车-路”协调统一的智能交通系统,仍需不断引入新的技术手段。近期量产
深度强化学习是当前人工智能研究领域新的热门方向,它将深度学习的感知能力与强化学习的决策能力相结合,以端对端的形式实现了从原始输入到输出的直接控制。提出至今,已经在众多决策控制和需要对高维原始输入数据感知的任务中得到应用,尤其是在指挥决策领域,获得了实质性的突破,然而当前的深度强化学习算法在指挥决策的过程中仍然存在数据利用率低、学习出的策略不稳定以及在欺骗性或稀疏环境中陷入局部最优、长期无法获得奖赏
随着社会的发展和科技的进步,越来越多的人开始关注人体健康。实时、准确、高效的人体姿态识别,可以被广泛应用在个人与家庭的健康监护、人机交互、医疗康复、虚拟现实、舞蹈采集、影视制作与步态识别等方面。近年来日益普及的智能手机,已经成为人们日常生活的重要组成部分;种类繁多、功能强大的嵌入式传感器使得智能手机成为一个无处不在的数据获取和分析平台,这也为高效的人体姿态识别提供了巨大的潜力,因而通过智能手机传感