【摘 要】
:
高光谱图像因其丰富的光谱信息而获得广泛的关注,但由于传感器硬件设备的局限性,使得高光谱图像的空间分辨率较低,这在很大程度上限制了高光谱图像的实际应用场景。为了解决这个问题,一种主流的做法是将低空间分辨率的高光谱图像与高空间分辨率的多光谱图像进行融合。高光谱图像作为一种典型的三维结构数据,具有光谱和空间两种重要属性,能否充分利用这些属性的特征成为融合算法非常关键的一步,为此,本文开展了如下工作:(1
论文部分内容阅读
高光谱图像因其丰富的光谱信息而获得广泛的关注,但由于传感器硬件设备的局限性,使得高光谱图像的空间分辨率较低,这在很大程度上限制了高光谱图像的实际应用场景。为了解决这个问题,一种主流的做法是将低空间分辨率的高光谱图像与高空间分辨率的多光谱图像进行融合。高光谱图像作为一种典型的三维结构数据,具有光谱和空间两种重要属性,能否充分利用这些属性的特征成为融合算法非常关键的一步,为此,本文开展了如下工作:(1)基于光谱字典学习的融合算法在光谱字典的帮助下捕获图像光谱特征,有效保持了图像的光谱特性完整,但由于缺乏对空间特征的利用,导致算法性能无法进一步提升。针对此,提出了基于双字典的高光谱图像融合算法。该算法在已有的光谱字典上,引入空间字典,通过双字典捕捉光谱和空间特征的能力,同时增强融合图像的光谱特性和空间细节。且在交替更新策略下,使得双域图像在相互约束下,彼此促进,最终融合出高质量的目标图像。此外,通过施加局部低秩约束,进一步提升了融合图像的视觉效果。(2)高光谱图像中除了存在光谱特征和空间特征外,还存在空谱联合特征。针对此,提出了基于张量的高光谱图像融合算法。张量作为高维结构数据的表示,针对此问题有着天然的优势,使用张量塔克分解,将高光谱图像的融合问题转化为三个模态字典和核心张量的估计问题。利用三个模态字典来捕获图像的光谱和空间特征,同时,通过对核心张量施加TT低秩约束,以充分利用图像的空谱联合特征,从而增强算法的融合性能。最后,本文在Indian Pine和Pavia University数据集上进行实验,从主观视觉效果和客观评价指标证明,本文提出的算法在一定程度上具有优越性。
其他文献
超表面是由人工设计的亚波长单元组成的。在过去的几十年里,超表面由于其操纵各种光波参数的能力和丰富的功能而引起了众多研究者的广泛关注。人们可以使用亚波长间隔和空间变化几何参数(例如,天线形状、尺寸、方向)的天线阵列,以形成空间变化的光学响应,从而实现光学波前的随意设计。通过将电磁参数可调谐材料加入超表面设计,人们可由外部控制实现器件功能可调,这为超表面领域的发展提供了全新的动力。本论文基于石墨烯和二
为了降低深度学习对标注样本数量的要求,小样本学习被提出并成为了近年来研究的热点。其中基于度量学习的方法首先将样本映射到嵌入空间中,然后使用距离度量实现分类。已有的度量学习方法通常仅将样本独立地进行特征映射,忽略了对任务整体地观察,导致样本在嵌入空间中的分布缺乏判别性;此外现有方法计算原型作为类表达特征时,仅简单求支持集特征均值,由于样本匮乏,原型计算容易受到噪声的干扰,从而对类别的代表性较差。围绕
近些年来,我国机动车保有量及道路交通量猛增,使交通管理变得异常复杂,给相关交管部门带来了极大的压力,这对智能交通系统技术的发展提出了更大的挑战。对于交通视频中车辆异常事件的检测,车型识别和视频异常检测算法作为其中的关键技术,是智能交通系统的重要组成部分,也一直是计算机视觉领域的研究热点。车辆型号种类众多,某些车型外观差异小,且在实际交通场景下拍摄的图像中的车辆呈现多视角和多尺度的特点,这些因素都造
近年来,随着汽车保有量的持续增长,许多城市道路承载容量已达到饱和,交通出行安全问题、拥堵问题、环境污染问题等日益突出。在这种背景下,我国大力推崇公共交通的发展。随着车联网技术、通信技术、计算机辅助技术以及大数据、云计算、区块链等信息技术的快速发展,越来越多的城市开始建设智能公交系统,智能公交的建设有利于解决上述问题,且符合智慧城市以及绿色发展的理念。另外,随着智能公交建设的规模越来越大,需要部署大
随着软硬件技术的进步,三维模型被广泛地应用于生活的方方面面。由于近些年三维扫描和三维建模技术的提升,使得三维模型的获取变得更加简单,三维模型的数量处理也日益频繁。面对越来越庞大的模型库,快速准确地检索用户需要的模型成为了亟需解决的问题。框架作为三维模型的一种表现形式,在简化表达的基础上可以最大程度保留三维模型的几何形状信息,是检索三维模型的优秀特征。本文以三维模型框架为研究基础,调研了模型框架提取
股市是上市公司筹措资金和股民投资理财的重要途径。影响股票价格的因素众多,股市波动存在不稳定的特点。尤其是在市场情绪作用下,股市波动具有明显的情绪化倾向,波动更加不稳定。本文根据直接或间接反映市场情绪的数据,从市场情绪的不稳定性和临界性出发,对股市趋势拐点进行研究,具体研究内容如下:(1)股市的情绪化倾向是股票市场具有高度不确定性的主要原因,直接利用历史数据的股票趋势预测方法,难以适应市场情绪的多变
车辆型号的识别在智能交通领域有着广泛的应用前景,其中识别任务主要使用监控系统的车辆图像。日间车辆图像的识别准确率较高,但是夜间车辆图像饱受弱曝光、大量噪声、多重光源等的干扰,这些干扰增加了车型识别任务的难度,因此针对夜间车辆的暗光增强研究在智慧城市中具有重大意义。在增强过程中,不同的增强方法会产生不同的噪声、欠曝光、过度曝光和模糊等现象。针对这些现象,本文基于卷积神经网络(convolutiona
人体运动数据被广泛应用在影视制作、医疗康复、体育训练和虚拟现实等领域之中。为了满足用户在不同场景下的需求,出现了多种运动采集设备,形成了多种模态的人体运动数据,多模态人体运动数据的融合可以用于运动数据去噪和运动合成等研究。然而,现有的多模态人体运动同步数据集的数据量和动作种类有限,为支撑更具通用性的研究,设计并采集一套公开的多模态人体运动数据集是亟待解决的问题。因此,本文基于现有的运动采集设备设计
2021年,元宇宙的概念火遍全球。虚拟化身是用户在数字化场景中使用的形象,是元宇宙与现实世界的接口。在元宇宙背景下,用户对在虚拟环境中构建自己第二分身——虚拟化身的需求将会增加,并且用户更倾向于自定义虚拟化身。自定义虚拟化身是指用户根据自身喜好在虚拟场景中设计并使用的形象,其特点是只有模型没有运动数据。所以在实时驱动这种自定义虚拟化身时一般是需要实时的运动重定向技术生成运动数据。然而,研究发现,一
在当今学术合作中,人们对不同领域、不同学科的学术合作的兴趣与日俱增,但人们仍然对学术大数据中跨学科、跨领域的动态协同合作机制知之甚少。以往的研究要么主要集中在学术网络拓扑上,而忽略了学术网络中的属性,要么主要研究学术网络中节点的属性,而忽略了学术网络中拓扑关系。为了进一步理解学术大数据中的主题和结构变化模式进而探究其中的协同合作关系,我们首先总结归纳了动态学术社交网络关系的分析以及图可视化方法,然