论文部分内容阅读
本论文综述了氮化硼纳米管和纳米片的制备、功能化及应用研究进展,认为合成依然是阻碍氮化硼纳米材料实际应用的主要问题之一。以此为选题依据,本文提出了几种高效制备氮化硼纳米管和纳米片的新方法,系统表征了材料的结构和性质,并研究了其在力学、热学和摩擦学方面的应用,主要内容和结论如下:(1)硼/氧化镁是化学气相沉积法制备氮化硼纳米管的经典前驱物,然而,这种前驱物仅在立式管式炉呈现出较高的反应活性,在水平管式炉中效率较低。X射线衍射表明反应中形成了大量的硼酸镁,高熔点的硼酸镁致使氧化硼失去反应活性。本文分别采用氧化硼和钨酸铵作为氧化镁的替代物,在不锈钢基底表面沉积了高质量的氮化硼纳米管,这种方法有效避免了硼酸盐的形成。(2)氧化镁被认为是硼/氧化镁体系制备氮化硼纳米管的催化剂,但硼酸盐的形成会降低这种催化剂的效率,也会导致氧化镁无法满足经典的气液固生长机制。通过分析反应中的各种物质,我们发现硼化镁能够在氮化硼纳米管生长温区稳定存在且保持液态。因此,本文以硼化镁为催化剂在水平管式炉中制备氮化硼纳米管,结果表明:这种催化剂效率高,重现性好,且能够适用于氧化硼、硼酸和硼/氧化钙等各种硼源。分子动力学模拟和透射电镜表征表明硼化镁的催化活性源于其液态特征和对氮化硼纳米管较强的成核作用。(3)基于硼化镁高的催化活性,球磨退火氧化硼/硼/硼化镁可以在常压下高产率制备氮化硼纳米管,一次反应可获得约200-300毫克纳米管。制备的纳米管可以有效提高聚氨酯的拉伸强度和热导率。(4)通过结合球磨退火,路易斯酸碱相互作用和超声剥离,本文以氧化硼/硼/氮化硼为原料制备了高分散的薄层氮化硼纳米片,产率约为40%。高的产率来源于多步处理的协同作用,条件试验表明球磨退火为主要因素。这种氮化硼纳米片也可以有效提高聚氨酯的热导率。(5)模板法是制备氮化硼纳米片的一种有效方法,文献报道的模板剂主要有尿素,盐酸胍和三聚氰胺,这些模板剂存在分解温度低和易挥发等特点,通常采用提高模板剂的用量来获取薄层的纳米片。本文使用乙酸锌为模板剂,可以在低用量条件下获得薄层的纳米片,所得纳米片可以用作添加剂提高纯水的减摩抗磨性能。乙酸锌的效率源于多步模板作用,最后产生的氧化锌伴随着氮化硼纳米片的形成而逐渐被氨气还原。(6)在氧化亚铁辅助下,氨气处理层状的硼化镁粉体可以在单晶硅表面沉积均匀的鳞片状氮化硼纳米片薄膜,所沉积的薄膜可以降低单晶硅的摩擦磨损。