论文部分内容阅读
金刚石中的氮空位色心(NV色心)因其独特的光/电磁特征和优异的电子学性质,使其在弱磁场等精密物理量的测量以及下一代电子器件有着可观的应用前景。无论是在下一代电子器件还是NV色心应用中,离子注入/辐照都是调控其性能的关键技术。本文分别以光学级和电子级单晶金刚石为对象,通过电子辐照、N、O、S离子注入,系统研究单晶金刚石的光/电性能演化规律,揭示单晶金刚石材料离子注入导致的结构损伤效应及其性能演化机制。经170 ke V、1×1016 cm-2电子辐照后,光学级金刚石光学透过率明显下降,但辐照对光学吸收边没有影响,同时电子辐照会促进NV-向NV0转化,原因在于其会优先破坏NV-色心,使其电离出自由电子,转变为NV0。经150 ke V N离子注入,光学级金刚石内产生的显著的位移损伤效应和N的掺杂效应导致金刚石光学性能不断退化。辐照注量增加值2×1016 cm-2时,材料光学透过率下降至零,金刚石完全石墨化。N注量为1×1011 cm-2时,注入的位移效应破坏了金刚石中原有的NV色心缺陷结构,使得NV0和NV-色心的相对强度都下降,而N离子的注量为1×1014 cm-2时,NV0和NV-色心的相对强度都上升,这是由于更高含量的N的掺杂给材料提供了较高的NV色心的氮原子源。相对于单一的N离子注入和电子辐照情况,综合辐照后自由基浓度增量明显高于N注入自由基浓度增量和电子辐照自由基浓度增量之和,说明N注入+电子辐照对金刚石自由基缺陷浓度的增加效应有相互促进作用,这也导致综合作用后光学透过率下降程度比二者单独引起的透过率下降之和更大。证明了N注入和电子辐照对光学性能退化有明显耦合作用。N离子注入的位移损伤及掺杂效应共同导致其光学性能退化;电子辐照由于电离损伤导致自由基含量增加而引起光学透过率下降。二者综合作用后,电子辐照显著增强N注入引起的缺陷的电离效应,导致光学吸收显著增加,进一步增加金刚石的光学退化。N离子注入NV色心变化机制在于注入产生的损伤缺陷与取代N原子含量的竞争。N注量较低时,位移损伤效应起主导作用不利于NV色心;N注量较高时,形成的取代N原子浓度起主导作用,有利于NV色心形成。不同注量O、S离子注入电子级单晶金刚石时,拉曼特征峰半高宽和峰强都随注量减小反而逐渐增大,半高宽变化规律出现反常。衡量晶格损伤程度的产额参数χmin随着离子注量的增加而明显提升。O注量为1×1016 cm-2的试样表面完全石墨化,其χmin为94%。S注量注量为2×1015 cm-2试样部分石墨化,其χmin为87.6%。O最大注量试样测得的载流子迁移率最大,为423.10 cm2/V·s。所有试样都检测到617 ke V处O背散射信号峰和960 ke V处Si背散射信号峰,这源于合成过程引入杂质。AFM测试指出S相对O对金刚石表面刻蚀能力更强。