论文部分内容阅读
杉木(Cunninghamia lanceolata)是我国南方重要的用材树种,有生长快、材质佳、种植面积大等特点。在发展生态林业大背景下,开展杉木人工林的多功能经营技术分析,可为杉木林分生态服务价值的景观规划、大径材培育、碳汇交易提供关键技术和数据。本文采用典型样地法、树干解析法和生物量全获法,在福建省将乐国有林场,获取不同类型(林龄、密度、立地)杉木人工林生长与收获数据。在搜集国内外大量的生长与收获模型表达式进行精度对比的基础上,选取了冠高模型、树干削度方程、直径分布模型、树高曲线模型、冠幅模型、直径模型、株数动态模型、立地质量评价模型、林分密度模型、形数模型的最优方程,并基于非线性混合效应模型法、非线性模型法、线性模型法等数理统计手段,对削度方程、直径生长方程等进行合理改进。在大量、系统杉木生长与收获模型基础上,结合德国引进的Forestsimulator系统,对杉木林分的蓄积量、生物量和景观质量进行评估和不同经营措施影响模拟。主要研究结论如下:(1)杉木在树高、胸径和材积生长过程结果中,生长临界点在20 a,杉木的基础年龄应选择20a;树干生长到胸高的位置大约需要2.1 a;数量成熟龄为34a。以树干圆盘横断面几何面积为基础,在几何平均半径、算术平均半径、最短半径和最长半径的统计分析中,几何平均半径统计结果具有最高精度。(2)在生长与收获模型中,描述杉木最优削度方程模型是d/D=(?),研究也表明,削度方程参数越多可能会带会更复杂的结构,容易造成共线性问题。Wellbull直径分布函数中参数a和b与林龄存在明显相关性,参数 c 与林龄无关,改进后得到直径分布模型是F=1-exp(-(d/(10.34*ln(A)-12.61))2.9619)。重构的直径生长方程是:D=137.2830*SI0.0300*N-0.2340*RD0.9840*(1-exp(-0.0935*A0.8180))。通过耦合的方法,耦合单木和林分的直径、树高、断面积和材积(蓄积量)生长与收获模型。(3)在林分调查因子的蓄积量、生物量和景观质量功能模型中,杉木单木二元材积方程为:V=4.798×10-5× D2 ×H0.9137。通过对生物量模型及其参数的分析,发现单木材积(TV)、木材密度(WD)和生物量木材密度转化系数(BECF)对生物量模型的估测精度影响较大,最高精度的生物量表达式是:ln(TB)=-0.3766+0.9685ln(TV)+0.9365ln(WD))+0.1538ln(BECF);单木生物量系数:bi=exp(-0.0703+0.9780ln(TV)+0.0213ln(WD)+1.0166ln(BECF)),那么林分的生物量就可以写成:SB=SV/TV*bi。林分景观质量与林分平均胸径的关系为:SSBE=0.21884*DBH+3.1741;林分景观质量模型与林分平均树高关系为:SSBE=0.2497*H+2.6526;单木景观质量与单木胸径之间的关系为:TSBE=0.4394*DBH2+1.5158*DBH+42.741;单木景观质量与树高之间的关系为:TSBE=3.6784*H1.4128,单木景观质量和林分景观质量之间的关系是:SSBE=2.7076*ln(TSBE)-7.2653。当林分平均胸径和林分平均树高分别小于8.4 cm和9.8 m时,郁闭度与林分景观质量呈现负相关关系,也就是郁闭度越大,林分景观质量越低;当林分平均胸径和林分平均树高分别大于8.4cm和9.8 m时,郁闭度与林分景观质量呈现正相关关系;类似的,在实验形数中,胸径在8.0 cm附近出现了明显分界点。说明对杉木单木或林分的幼树或幼龄林的划分具有一致性,而且在相关问题的研究结论上具有完全相反的结论,因此杉木树种的研究应以8.0 cm为幼树、幼林分界点。(4)新构建的杉木生长与收获方程具有精度更高、适用Forest simulator等特点,能较好的嵌套于Forest simulator系统中,可以通过Forest simulator系统开展林分生长过程和经营规划模拟。在假定单一变量改变的条件下,通过Forestsimulator系统生长模拟运行,发现株数密度3000株/hm2、间伐模式为生长伐、间伐强度比0.9的林分生长与收获量最大。不同的立地指数对单木和林分平均树高影响显著,随着立地指数的增加而不断提高,立地指数从12到26,林分平均树高增加了 17.13m。立地质量越高林分平均直径也越大,但是变化的幅度相对树高来说更小,林分平均直径增加了5.35cm。在林分更新条件下,杉木人工林从纯林逐渐演替为异龄林,直径分布结构在77a时变为负指数分布,伴生树种也不断增加,逐渐演替为混交林,可在不同时期进行收获一定量的目标树,实现可持续经营。