论文部分内容阅读
随着通信技术的飞速发展,使得通信系统对宽频带、大功率等指标要求愈来愈高。因而推动了微波单片集成电路(MMIC:Microwave Monolithic Integrated Circuit)的发展。但是MMIC受到半导体工艺等方面的限制,往往单个功放单元难以满足系统高功率输出的要求,所以微波固态功率合成技术是一个重要的研究方向。在整个功率合成系统中,功率分配/合成器具有比较重要的地位,其低的损耗、良好的幅相特性能够有效地提高整个功率合成系统的合成效率。本文以微波宽带固态功率合成技术为研究方向,设计了基于扩展同轴波导以及悬置微带线的多路宽带功率分配/合成器。在本文第一章概述了微波固态功率合成技术的研究背景以及国内外的发展现状。第二章介绍了功率合成的基本理论以及分析了影响合成效率高低的关键因素。第三章介绍了扩招同轴波导的功率分配/合成器的设计方法,这种功分/合成器可以直接进行N路分配/合成,能够有效地缩减合成放大器的尺寸,基于此设计了2GHz-8GHz的6路、9路、12路、15路功分器,从仿真结果可以看出他们的回波损耗都大于15dB,插入损耗会随着路数的增多而增大;另外设计了6GHz-18GHz的6路功分器,测试结果表明,输入端的回波损耗大于12dB,插入损耗小于1.5dB。第四章介绍悬置微带线的基本特性,设计了2GHz-18GHz的多路功分网络,从测试结果看出,2路的功分网络输入端回波损耗大于10dB,插入损耗小于1.8dB;4路的功分网络输入端回波损耗大于10dB,插入损耗小于1.5dB;8路的功分网络输入端回波损耗大于10dB,插入损耗小于2.5dB。随后改进微带线到悬置微带线的过渡结构,新过渡形式在2-18GHz内的回波损耗大于26dB,插入损耗小于0.03dB,基于此设计了改进型2-18GHz的2路、4路、8路功率分配器,从仿真结果来看输入端的回波损耗大于15dB,插入损耗小于0.3dB;另外设计6-18GHz的8路功率分配/合成器,仿真结果表明输入端的回波损耗大于17dB,插入损耗小于0.5dB,基于此设计了6-18GHz的功率合成放大器,输出47dBm的功率。