几类小度数对称图研究

来源 :北京交通大学 | 被引量 : 0次 | 上传用户:dyc56
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
称图r是对称图或弧传递图,如果r的全自同构群作用在r的弧集上传递.对称图,特别是小度数对称图,常被用来设计互联网络.本文主要研究连通无核三度对称m-凯莱图,非交换单群上连通四度2-弧传递凯莱图,具有非交换单群传递的连通五度对称图以及具有特征非交换单群传递的连通五度对称图.论文结构组织如下.第1章主要介绍本文所要用到的有限群论和图论的基本概念.第2章研究无核三度对称m-凯莱图.如果一个图r含有一个自同构群G使得它在点集v(r)上作用半正则且恰好有m个轨道,我们称图r是群G上的m-凯莱图.当m= 1时就是我们熟知的凯莱图;当m =2时也称为双凯莱图.在本章中我们给出了分类无核三度对称m-凯莱图的一个计算方法,并用它重新证明了无核三度对称凯莱图在同构意义下只有15个.此外,还证明了在同构意义下,无核三度对称双凯莱图只有109个,其中48个是非交换单群上的双凯莱图.无核三度1-弧正则3-凯莱图,4-凯莱图,5-凯莱图,6-凯莱图和7-凯莱图,分别有1,6,81,462和3267个.第3章研究非交换单群上连通四度2-弧传递凯莱图.设r是群G上的一个凯莱图.如果G在全自同构群Aut(r)中正规,则称r是群G上的正规凯莱图.设r是非交换单群G上的一个连通四度2-弧传递凯莱图.本章证明了要么r是G上的正规凯莱图,要么G是7个群之一.对于后一种情形,Aut(r)有一个正规弧传递子群T使得G≤T且(G,T)=(M11,M12)或者(An-1,An),其中n= 23·3,22· 32,23·32,24· 32,24.33或24.36.第4章研究具有非交换单群传递的五度对称图.设G是一个非交换单群,r是一个连通的G-点传递五度对称图.本章证明了要么G在Aut(r)中正规,要么Aut(Γ)含有一个正规弧传递子群T使得G≤T且(G,T)=(Ω8-(2),PSp(8,2)),(A14,A16),(PSL(2,8),A9)或者(An-1,An),其中 n ≥ 6且n| 29· 325.特别地,如果r是G-弧传递的,那么(G,T)对减少为17个;如果r是G-正则的,那么(G,T)对减少为13个.第5章研究具有非交换特征单群传递的五度对称图.设G是一个非交换单群,n是一个正整数.本章证明了,如果对任意一个连通G-点传递五度对称图r,有G在Aut(Γ)中正规.那么,对任意一个连通的Gn-点传递五度对称图∑,有Gn在Aut(∑)中正规.结合第4章的结论,我们可以得到以下结果:1)设Σ是一个连通G”-点传递五度对称图.则G”在Aut(Σ)中正规或者G是以下57个群之一,即PSL(2,8),Ω8(2)或者An-1,其中n ≥ 6且n | 29· 32·5;2)任意一个连通的G”上的五度对称凯莱图是正规凯莱图,除了 G是以下20个群之一,即PSL(2,8),Ω8(2)或者An-,其中n=2·3,23,32,25,22-3,22·5,23·3,23·5,2.3·5,24·5,23.3·5,24-32.5,26.3.5,25·32-5,27·3-5,26.32-5,27·32-5或29.32.5;3)设Σ是一个连通的G”-弧传递的五度图.则(Gn在Aut(∑)中正规或者G是以下17个群之一,即An-1,其中n:= 23,22.3,24,23·3,25,22· 32,24·3,23· 32,25·3,24· 32,26.3,25.32,27·3,26.32,27.32,28.32或29· 32.第6章讨论一些有待研究的问题.
其他文献
学位
学位
学位
学位
学位
学位
学位
学位
“十三五规划”的稳步开展促进经济发展与生态文明建设的深度融合,实现可持续发展成为经济社会发展的原则之一,其中绿色金融作为经济可持续发展的重要组成不但能够为绿色产业企业提供资金支持,同时也是社会经济转型升级的重要支撑之一。这其中,绿色债券成为促进绿色金融发展的重要因素之一。2016年以来,随着我国绿色金融体系的逐步完善,绿色债券市场发展迅猛。能源化工行业的节能环保项目符合绿色债券的发行标准,因此如果
在当前素质的教育理念下,应该重视对学生的教学工作,特别是小学数学对于学生的成长而言是不可缺少的一部分,数学学习自身具备一定的思维性,学生在学习的过程中需要做好相应的分析工作,但是由于年龄和阶段的限制,小学生的思维逻辑还没有完全形成,而且形象思维占据相对较多,这使得学生在解决一些难度比较高的问题时,没有较好地解决方法。而画图策略作为当前小学数学教学中的一部分,它能够帮助学生更好、更细致地做好分析,从