【摘 要】
:
关键词识别指在连续语音流中检测出预定义关键词。由于深度神经网络在语音识别方面有着突破性发展,近年来关键词识别的研究主要是基于语音识别展开的。这类方法首先使用声学
论文部分内容阅读
关键词识别指在连续语音流中检测出预定义关键词。由于深度神经网络在语音识别方面有着突破性发展,近年来关键词识别的研究主要是基于语音识别展开的。这类方法首先使用声学模型和语言模型将语音信号解码成文字,然后利用文本查找方法搜索关键词。虽然这种方法能识别关键词,但存在以下问题:1、关键词识别准确率受语音识别和文字查找方法影响。2、无法检测无文字语言,该方法需要将语音转成文字,对于无文字语言不适用,例如,方言、少数民族语言等。3、无法获取关键词的时序信息,音频转录成文字后,损失了关键词的时序信息,无法知悉关键词处于音频哪个时间段。针对问题2和问题3,本文设计一种能识别无文字语言关键词且能准确获取关键词时序信息的关键词识别方法。本文将生成式对抗网络用于关键词识别,提出一种基于GAN的音频关键词识别方法,解决无文字语言关键词检测。在本文所提方法中,提取梅尔频率倒谱系数后直接输入生成式对抗网络生成器,生成器获取关键词特征,输出关键词时序信息。GAN中判别网络起监督作用,它使生成器输出序列更加贴近人工标注的标签序列。为了获取语音中关键词的位置信息,该算法定义了一个定位损失函数,这保证了生成的掩码序列可以检测关键词并获取关键词的位置信息。实验发现,基于GAN的音频关键词识别方法在语音不转成文字的情形下能检测关键词。在自制的数据集上,所提算法识别关键词的准确率可超过80%。本文利用所提算法设计并实现了一个音频关键词检测系统。该系统包括在线录音、模型训练、关键词检测以及检测结果查看功能。用户选择模型后,通过在线录音方式进行关键词识别,系统将识别结果反馈在界面上供用户查看。此外,基于GAN的音频关键词检测系统还设置了关键词屏蔽功能,当系统检测到关键词后,系统将其用噪声屏蔽,这样就能达到敏感信息、隐私信息保护的目的。
其他文献
氰酸酯树脂(CE)是一种高性能热固性树脂,具有优异的介电性能、力学性能、热稳定性和加工性能等,在电子封装材料、印刷电路板、高性能雷达罩以及航空航天材料等领域具有广阔的应用前景。由于高性能树脂基复合材料具有高比强度和比刚度、优良的力学性能和热稳定性等特点,是航空航天材料的发展重点。其中,纤维增强体是航空航天材料用树脂基复合材料的重要组成部分。然而由于纤维增强体与树脂基体间的热膨胀系数相差较大,材料间
纳米激光器作为未来薄膜显示、集成光学、光通信技术的重要组成部分,具有广泛的应用前景,是微纳光学领域的研究热点。钙钛矿半导体材料具有优异的扩散长度、光学吸收度和载流子活性,是制备在室温工作的具有波长可调谐的低激射阈值纳米激光器的理想材料。本论文我们系统研究了利用化学气相沉积方法制备的CsPbI_3三棱锥温度依赖的光激射行为,取得了如下的具体成果。首先,通过控制化学气相沉积方法的气压、载气流速、温区分
对太阳能更好地利用可以有效地解决当今世界环境污染和能源短缺两大难题,其中半导体已被证实可以实现太阳能的化学转化及存储,在光降解有机污染物、光解水产氨产氧等方面具有潜在的应用价值。而传统的半导体材料往往具有能带结构差、光吸收范围窄、金属性等缺陷限制了其实际应用。石墨相氮化碳因其独特的禁带宽度(Eg:2.7eV)、非金属低毒性、材料稳定性及制备过程简单等特点,渐渐成为了人们关注的焦点。据研究影响光催化
大规模MIMO技术作为第五代无线通信系统的关键技术之一,由于其频谱利用率高、链路可靠性高等优点,近年来受到了广泛的关注。然而,基站端大规模天线阵列的存在给信号检测算法的实现带来了巨大挑战。在传统的集中式检测方法中,所有天线模块上接收到的原始基带数据需要传输到基站的中心处理单元进行处理,数据速率往往极高,互连带宽将成为一个新的技术瓶颈,信号检测需要利用分布式架构来实现。本文首先简单介绍了几种分布式基
现代社会进入了能源的高速消耗阶段,不管是传统能源的储量还是其安全问题都给社会发展的开发利用带来了许多困难。核能是目前世界范围内可以达到工业化应用并有望代替传统能源的新能源。但是,核能应用产生的放射性废料,一旦发生泄漏或处理不当,将对地球环境及生物造成巨大的威胁。而在核能的使用中,使用铀的所占比例很高,而它的衰变产物是生态环境中的主要污染物质。因此,高效的吸附铀具有很重要的意义。而硫化物在吸附铀酰根
本文利用塔克拉玛干沙漠腹地2017年7月GPS加密探空资料、风廓线风场数据及地面气象要素,分析了沙漠夏季夜间稳定边界层结构变化特征、天气个例位温及风速垂直廓线的特征变化;
金属卤化物钙钛矿(MHPs)因其出色的光电性能、低成本和高转换效率(PCE)而成为光伏光电材料领域的研究热点,在太阳能电池、LED、激光器和光催化中有着广泛的应用。在短时间内,钙钛矿太阳能电池的PCE从最初报告的3.8%已提升到23%以上。但是,这些材料的大规模使用受到铅等有毒重金属的影响以及在环境条件下长期稳定性的限制。为避免这些问题,A_3M_2X_9型无铅金属卤化物类钙钛矿材料因其具有独特的
随着经济的高速发展、化石燃料的过度消耗以及环境污染的不断加剧,人们对清洁、高效和可持续储能装置的需求不断增长。在各种电化学储能技术中,超级电容器由于功率密度高、充放电速率快、循环寿命长和环境友好等优点具有广泛的应用前景。制备孔隙度丰富和氧化还原活性高的电极材料具有十分重要的意义。金属有机框架材料(MOFs)是由有机配体和金属离子组成的一类多孔晶体材料。由于其具有孔径可调、比表面积大和结构多样等优点
半导体纳米晶的光学性质在近些年来引起了相当大的关注。部分纳米晶已经成功应用在激光、荧光生物医学探针等量子器件上。CdSe纳米晶因其窄带隙和卓越的光学性质,成为广泛研究的半导体纳米晶。同时核壳结构的半导体纳米晶也是材料领域研究的主要对象。研究者发现在CdSe核表面外延生长CdS壳层可以显著提高其光致发光效率以及化学和热稳定性。由于压力可以改变纳米晶的电子和晶体结构,利用高压装置对核壳半导体纳米晶进行
NO_2近些年来成为困扰人类的一种有害气体,过量的NO_2是导致酸雨、地表水酸化和富营养化的重要原因。半导体气敏传感器则是检测大气中NO_2浓度的重要手段之一,备受研究人员青睐,而半导体气敏传感器的核心就是制作传感器的半导体材料。ZnSe是一种非常重要的宽禁带Ⅱ-Ⅵ族半导体材料,在可见光(400700 nm)范围内的光电催化及光电转化特性性能十分优异,在激光、全天候光学装置、红外热成像、高分辨率的