干燥提质对褐煤物化结构的影响及其与表面稳定性和燃烧反应性关联的研究

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:allans
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着我国社会经济的快速发展,储量相对丰富的褐煤资源的利用逐渐受到重视,燃烧是其主要利用途径之一。但因高水分含量、低热值及易自燃的特点导致其在利用过程中存在运输成本高、利用效率低等问题。干燥提质降低褐煤中水分含量、提高褐煤的热值,是其高效转化的关键。然而褐煤活性基团丰富和孔隙发达的结构特征使其干燥提质后的表面稳定性较差,极易吸附水分子和氧分子进而引起煤质下降、自燃等。褐煤表面物化结构会随干燥提质过程发生变化,直接影响其表面稳定性和燃烧行为。对褐煤干燥提质-物化结构调控-表面稳定性和燃烧反应性关联的本质掌握是褐煤提质利用的核心。本论文旨在探究干燥提质对褐煤物化结构变化的影响及其与表面稳定性和燃烧反应性关联的作用机制,以期为褐煤的安全高效利用提供理论指导,促进褐煤的大规模利用。采用水热提质、固定床干燥和微波干燥技术对褐煤进行脱水处理,重点关注不同干燥提质过程中褐煤表面活性基团和孔隙结构的演变,及其水分复吸、低温氧化和燃烧反应性的变化规律。以变质程度不同的云南褐煤和内蒙褐煤为实验原料,通过水热反应釜、固定床反应器、微波反应器在不同条件下制备得到干燥提质煤样,采用工业分析、元素分析、FT-IR、N2吸附等方法分析干燥提质煤样的组成、化学结构和孔隙结构的变化;然后对干燥提质煤样进行水分复吸和低温氧化实验,探索煤样物化结构对其表面稳定性的影响实质;进行燃烧实验考察不同干燥提质方式对褐煤燃烧反应性的影响,解析水热提质样的燃烧过程,揭示煤样芳香度和孔隙结构的改变对其燃烧阶段的影响机制。相关研究内容和主要结论如下:(1)考察水热提质褐煤的水分分布及水分复吸特性,结果表明:水热提质过程中,云南褐煤和内蒙褐煤脱除的水分主要包括分子水、毛细水、自由水,其中分子水脱除率更高。水热提质可分解褐煤中大量含氧基团、减少水分吸附位点,使得褐煤中分子水含量降低,进而引起部分毛细水和自由水减少。相比内蒙褐煤,变质程度较低的云南褐煤脱除的水分更多。水热提质可有效降低褐煤的平衡含水量,抑制其水分复吸。水热提质过程中煤样含氧基团的减少降低第一类水分吸附量;孔隙结构的变化影响第二类水分吸附量。控制水分复吸最主要的措施是分解褐煤中亲水性含氧基团,降低单层吸附水以及多层吸附水;其次是破坏中孔结构,减少毛细冷凝水的形成,减小孔体积从而降低水分子赋存空间。(2)分析水热提质褐煤的低温氧化行为及其自燃倾向性,结果表明:30–150℃的煤低温氧化过程可分为2个阶段:缓慢氧化和快速氧化。在缓慢氧化阶段(30–65℃),煤样甲基(-CH3)和亚甲基(-CH2-)吸氧形成过氧化物,进一步生成羰基(>C=O)、醛基(-CHO)、羧基(-COOH)等含氧基团,该阶段煤氧化放热量较低,煤温变化较小;随温度升高至65℃以上,达到快速氧化阶段,-CH3和-CH2-氧化反应加速,新生成以及原有的含氧基团分解生成CO和CO2等气体产物;当煤样温度升高至90℃后,羟基(-OH)和-COOH会脱水生成酯,-COOH还可脱水生成酸酐,酚羟基(Ar-OH)可氧化成醌;当煤样温度升高至120℃后,氧化反应剧烈发生,产生大量热量。活性基团、自由基和孔隙结构是影响煤低温氧化的重要因素,其中活性基团是主要起因。内蒙褐煤水热提质样的自燃倾向性随提质温度变化。经230℃水热提质后,煤样中分解的含氧基团-COOH和Ar-OH相对较少,但孔体积和比表面积的发展使得其表面活性基团更易与氧接触,因而低温氧化和自燃倾向性升高;300℃水热提质后,煤样中大量含氧基团-COOH和Ar-OH分解、部分脂肪侧链断裂,孔体积和比表面积同时有一定减少,因而低温氧化和自燃倾向性降低。(3)探究固定床和微波干燥褐煤的物化结构及表面稳定性,结果表明:120℃固定床干燥煤样的含氧基团变化较小,160℃固定床干燥煤样有少量-COOH分解,其它基团变化较小;微孔增多导致其比表面积增大,中孔和大孔减少导致孔体积降低。500W和700 W微波干燥煤样的-COOH和Ar-OH明显降低,其减少幅度明显高于固定床干燥煤样;随微波辐射功率升高,干燥样的中孔和大孔明显减少,引起比表面积和孔体积降低。经过固定床干燥和微波干燥后,内蒙褐煤在11.3%、50.0%和95.0%相对湿度下的平衡含水量均降低。干燥煤样在低相对湿度下平衡含水量的降低主要源于含氧基团的减少;在高相对湿度下平衡含水量的降低主要源于含氧基团和孔体积的降低。由于微波干燥对内蒙褐煤含氧基团和孔结构的影响大于固定床干燥,且微波干燥样平衡含水量的降低更显著,微波干燥对内蒙褐煤水分复吸的调控作用更强。固定床干燥和微波干燥煤样在低温氧化过程中的CO2释放量以及临界自燃温度降低。(4)分析不同干燥提质褐煤的燃烧反应性及与其物化结构的关联,结果表明:固定床干燥、微波干燥、水热提质均改善了内蒙褐煤的燃烧反应性,其中水热提质的改善效果更显著。内蒙褐煤原煤和水热提质样的燃烧过程可分三个阶段描述:水分蒸发阶段、煤脱挥发分阶段和焦燃烧阶段。煤中含氧基团主要影响水分蒸发阶段和脱挥发分阶段的热释放量,芳香度主要影响焦燃烧阶段的本征活化能。水热提质增加了内蒙褐煤的芳香度,增大了焦燃烧阶段的本征活化能。孔隙结构的变化主要影响煤燃烧过程的气体扩散行为,230–300℃水热提质样的大孔体积和高比表面积降低了其扩散活化能,330℃水热提质样孔体积和比表面积较小,增大了其扩散活化能。对于水热提质煤样,孔隙结构变化对燃烧过程的影响大于煤芳香度变化的影响。
其他文献
Ti/Al层状复合板兼有Ti、Al金属的优异性能,可实现Ti、Al异种金属优势互补,其冲压成形制件在汽车、船舶、航空航天、电子、医疗等领域具有广泛应用前景。然而复杂零部件的制备对复合板的力学性能和成形性能有极其严苛的要求。目前,对Ti/Al复合板冲压成形性能的研究非常有限。且不同于单一板材,复合板中层界面的存在及其结构和性质演变对其成形行为具有很大的影响,而这亟待深入研究。本文采用热压、轧制及退火
干热岩作为优质的、储量巨大的、暂未开发的地热资源,其高效开发利用已成为世界范围内的研究热点。利用深部干热岩体天然裂缝系统构建储留层会大幅简化储留层施工流程,降低施工难度和开发成本,提高水-岩热交换的效率。因此本文提出利用裂缝充填花岗岩体自身结构特性建造干热岩储留层并以此开采干热岩地热能的新研究方向。针对这一崭新课题,本文进行了一系列研究,并得出如下结论:(1)通过现场勘察研究深部干热岩体天然裂缝系
随着信息技术的跨越式发展,集成电路制造技术的不断改进,传统的硅基电子器件成为了后摩尔时期集成电路发展的重大障碍,研究和开发基于新材料、新结构和新工艺的器件已迫在眉睫。自旋电子学是一门近几年结合微电子学、磁学和材料科学提出的具有革命性的交叉学科,其旨在利用电子的自旋属性来实现信息存储、传递和处理等功能,近年来已逐渐成为最活跃的科学前沿。自旋电子器件具有集成度高、运行速度快,低能耗等传统半导体电子器件
混沌光保密通信是将混沌激光信号作为掩藏信息的载波对信息加密,再利用混沌同步进行信息解调的一种新型保密通信技术,它因具有硬件加密、传输速率高、长距离以及与现有光纤网络兼容等优点而受到广泛关注。其安全性依赖于混沌收发机的参数匹配。硬件参数均为密钥参数,参数的安全性结合空间的大小决定了混沌保密的安全程度。镜面反馈半导体激光器由于结构简单和易于集成的优点被广泛用作混沌收发机。然而,基于镜面反馈半导体激光器
不久前,科学家终于见到"海绵宝宝"和"派大星""同框"了!但是它们的会面地点不是在"海绵宝宝"太平洋底比奇堡的家,而是在北大西洋1 885米深的洋底。2021年7月27日,在北大西洋的海山附近,遥控无人潜水器拍摄到了"真人版"的"海绵宝宝"和"派大星"。画面中"海绵宝宝"身体呈方形,颜色金黄,有明显的出水孔,与卡通形象十分相像。有趣的是,这一次"海绵宝宝"的好朋友"派大星"也入镜啦。它们的体
期刊
《全日制义务教育语文课程标准》强调:阅读是学生的个性化行为,不应以教师的分析来代替学生的阅读实践。应让学生在主动积极的思维和情感活动中,加深理解和体验,有所感悟和思考,受到情感熏陶,获得思想启迪,享受审美乐趣。要珍视学生独特的感受、体验和理解。因此,在阅读教学中,教师需要从课内到课外实现阅读文本的综合融入,以此使学生能在丰富的素材中逐渐培养阅读习惯,实现内外双修的育人目标。
本研究通过对表现出丛枝和花变叶症状的芝麻感病植株总DNA进行植原体16S rRNA和rp基因的PCR扩增、克隆、测序及序列分析,明确了两种病株的病原均为植原体,并将其命名为云南元谋芝麻丛枝植原体(SEWB-YNym)和云南元谋芝麻花变叶植原体(SEP-YNym)。两个株系的16S rRNA基因片段长度均为1 248 bp,并且碱基序列完全一致。通过与其他地区报道的芝麻植原体株系16S rRNA基因
齿轮作为重要的机械基础件,被大量应用于机床、煤炭、航天等工业领域。在制造技术日新月异的今天,对齿轮性能的要求也在逐渐发生变化,齿轮需要同时满足高精度、小型化,高承载能力,高齿面硬度等技术指标。为满足以上要求,可以提高齿轮齿面硬度的硬齿面技术被应用于齿轮加工过程中,因此齿轮制造工艺的发展主要集中在两方面,采用硬齿面齿轮加工新技术和提高齿轮加工效率。但目前,国内的硬齿面加工技术在上述两方面还与国外先进
地热能作为一种清洁、绿色、可再生能源越来越受到各国研究学者的关注与重视。在地热能开采的过程中,无论是井筒的钻进,还是开采过程中水在人工储留层中的冷热交换,都会涉及到高温岩体的冷热交替作用,而在冷热交替的作用下岩体必然产生损伤劣化进而引起其物理力学性质的变化,一方面会对高温岩体钻进过程中井筒的稳定性产生不利的影响,另一方面对热储层裂隙网络通道的进一步扩展及新裂隙的产生起到了有利的促进作用。本文针对地
工具技术作为支撑高端精密装备发展的基础,很大程度上决定了装备发展水平。随着制造业发展对机械零部件加工精度等要求的日益提高,磨削在零件高效精密加工中的地位越来越突出,对磨削工具及其制备技术也提出了更高的要求,高强度低磨损的新型砂轮制备技术因此成为实现高效磨削的关键切入点之一。黏结、电镀和普通热源钎焊等方法作为cBN砂轮的常规制备技术,存在诸如磨粒与基体结合强度低、基体热变形大等缺陷,严重阻碍了砂轮的