论文部分内容阅读
癌症严重威胁人类的健康,是全世界最常见的死亡原因之一。尽管现有的抗肿瘤疗法取得了一定的成效,但基于化疗药物和放射治疗的标准抗肿瘤疗法仍存在潜在的副作用。近年来,一些研究表明极低频、低强度的磁场对正常的细胞无害,甚至可能是有益的,而这类磁场会对某些恶性肿瘤产生一定影响。极低频磁场(<300Hz)已被证实能够参与调控肿瘤细胞周期分布、凋亡、自噬、分化、系统免疫等过程,且能通过多种信号通路抑制血管生成和转移,并且具有副作用小、成本低、应用广泛、无创等优势。此外,在与化疗药物的联合治疗中,极低频磁场不仅能通过刺激肿瘤细胞表面产生小孔而促进药物的吸收,还能通过调节细胞周期和凋亡相关蛋白增强化疗药物的作用、降低化疗药物剂量。然而,尽管关于极低频磁场对肿瘤细胞生物效应的研究众多,但应用的磁场类型、磁场参数、测试的肿瘤细胞类型差异较大,因此该研究领域的研究成果一致性、重复性较差。针对上述问题,为了探究极低频磁场在肿瘤治疗领域的潜在应用价值,本文开展了极低频交变磁场细胞培养系统及其生物效应研究,主要研究内容如下:(1)研制极低频交变磁场细胞培养系统。为了探究极低频交变磁场对肿瘤细胞的影响,既要满足基本的细胞培养条件,又要在足以覆盖细胞培养器皿的空间内产生均匀的磁场照射环境。提出基于现有商业型细胞培养箱的磁场内置型细胞培养系统,将改进型亥姆霍兹线圈内置于细胞培养箱,采用基于H桥的串联谐振电路驱动线圈产生强度、频率可控的极低频交变磁场;为了将磁场照射方向纳入实验设计,提出将大尺寸三维亥姆霍兹线圈外置于细胞培养箱的磁场外置型细胞培养系统,选用亚克力作为细胞培养箱的制作材料以避免常规金属材质细胞培养箱对磁场分布的影响,结合线圈产生的均匀区大小定制了细胞培养箱内嵌于三维亥姆霍兹线圈中,以实现细胞培养的同时施加强度、频率、方向可控的极低频交变磁场。(2)针对磁场类型、强度、频率、处理时长以及检测样品等实验设置的差异引起的极低频磁场对肿瘤细胞效应重复性、一致性较差的问题,本文从磁场照射方向、磁场强度、频率、细胞种类四个方面分析了极低频交变磁场对细胞增殖的影响。利用磁场外置型细胞培养系统设计了细胞存活率检测对照实验,结果表明垂直于细胞培养平面照射的磁场比平行照射的磁场抑制细胞增殖的效果更显著;采用磁场内置型细胞培养系统验证了极低频交变磁场强度、频率对细胞增殖能力的影响,结果显示肿瘤细胞存活率随磁场强度的增加而降低,不同频率磁场对不同种类肿瘤细胞的抑制效果存在差异,极低频交变磁场对普通上皮细胞的抑制作用有限。(3)针对极低频交变磁场细胞生物效应机制尚不明确的现状,采用TMT标记蛋白质组学法与质谱法对未照射/照射磁场(200Hz,1m T)环境中生长24小时的乳腺癌细胞MCF-7进行了图谱分析,结合生物信息学分析方法筛选出了差异表达蛋白,利用基因本体数据库、京都基因与基因组百科全书数据库对差异表达蛋白进行分析、注释、定位、通路富集以探索其涉及的机制,结合免疫印迹法与流式细胞术进行初步的实验验证,为后续基于蛋白质组的极低频交变磁场抑制肿瘤细胞增殖机制研究提供指引。(4)为了探究极低频交变磁场诱导乳腺癌细胞凋亡的机制,从机理上解释极低频交变磁场如何抑制肿瘤细胞增殖,设计免疫印迹法、流式细胞术、荧光检测法等实验,研究了极低频交变磁场引起的乳腺癌细胞凋亡和周期阻滞的机制。结果表明细胞周期阻滞与凋亡现象随着照射时长的增加而增强,G2-M期细胞数量的增多与极低频交变磁场引起的细胞周期蛋白Cyclin B1下调有关,而细胞凋亡的发生与极低频交变磁场诱导的活性氧生成、PI3K/AKT信号通路抑制、GSK-3β激活相关,通过加入GSK-3β抑制剂进行重复性实验证实了GSK-3β在极低频交变磁场诱导细胞凋亡中的关键作用,为极低频磁场抑制肿瘤细胞增殖的现象提供理论基础。通过对上述内容的研究,本文的创新点如下:(1)针对极低频交变磁场生物效应研究中的装置研发及机理研究问题,研制了极低频交变磁场细胞培养系统,较为系统地研究了极低频交变磁场照射方向、磁场强度、频率对不同细胞系增殖的影响,设计细胞存活率检测对照实验,得出垂直照射的磁场对肿瘤细胞增殖抑制作用较为明显且细胞响应随磁场强度的增加而增强、不同类型的肿瘤细胞对频率的响应差异较大、磁场的照射对普通上皮细胞增殖无显著影响的结论。(2)针对极低频磁场引起的生物效应机制尚不明确的研究现状,对极低频交变磁场照射后的乳腺癌细胞进行了TMT标记蛋白组学分析。采用质谱法和生物信息学分析方法对比经极低频交变磁场照射24小时的乳腺癌细胞MCF-7细胞系与未经处理的MCF-7细胞系的谱图,筛选出差异表达蛋白并进行定位、注释与富集分析,揭示了极低频交变磁场对乳腺癌细胞生物效应的潜在机制,为深入研究极低频磁场引起的肿瘤细胞生物效应提供思路。(3)研究了极低频交变磁场诱导乳腺癌细胞凋亡和调控细胞周期分布的机制,设计免疫印迹法、流式细胞术、荧光检测法、活性氧检测等实验,探究极低频交变磁场引起细胞周期阻滞、细胞凋亡的机制。提出乳腺癌细胞周期阻滞于G2-M期主要与极低频交变磁场引起的细胞周期蛋白Cyclin B1降低相关,而细胞凋亡与极低频交变磁场诱导的活性氧生成、GSK-3β激活有关,为特定频率极低频磁场抑制细胞增殖的现象提供理论基础。