【摘 要】
:
微生物固化技术(MICP)可以显著改善砂土地基的力学特性,但同时存在强度增长伴随着脆性增强的问题。本文尝试将纤维加筋技术与MICP固化技术结合,以改善其力学性能,并结合一系列室内试验,对纤维加筋MICP固化砂土的影响因素展开研究;提出了一种能够准确表征MICP固化砂土脆性强弱的评价指标。主要研究内容如下。(1)基于固结排水三轴试验,探讨胶结处理次数、纤维掺量、纤维长度以及试样初始相对密实度等参数对
论文部分内容阅读
微生物固化技术(MICP)可以显著改善砂土地基的力学特性,但同时存在强度增长伴随着脆性增强的问题。本文尝试将纤维加筋技术与MICP固化技术结合,以改善其力学性能,并结合一系列室内试验,对纤维加筋MICP固化砂土的影响因素展开研究;提出了一种能够准确表征MICP固化砂土脆性强弱的评价指标。主要研究内容如下。(1)基于固结排水三轴试验,探讨胶结处理次数、纤维掺量、纤维长度以及试样初始相对密实度等参数对纤维加筋MICP固化砂土力学特性的影响,并结合电镜扫描测试,从微观角度初步探究了其内在机理。结果表明:胶结处理次数和相对密实度的影响规律较为明显,当胶结处理次数为8次,密实状态为稍松时,纤维加筋能更加经济有效地改善MICP固化砂土力学性能;而对于纤维掺量和纤维长度,有待开展进一步研究揭示其影响规律。(2)基于无侧限抗压强度试验和体视显微镜测试,从宏细观角度探究了纤维长度和纤维掺量参数的影响规律。结果表明:当纤维掺量较低时,加筋效果随纤维长度的增长而增强;当纤维掺量较高时,加筋效果随纤维长度的增长,先增强后减弱;但纤维掺量的影响规律较为单一,加筋效果随着纤维掺量的增加,呈现先增强后减弱的规律;研究范围内最优加筋条件为0.3%纤维掺量和20 mm纤维长度。(3)结合MICP固化砂土脆性随处理次数增加而增强的试验规律,根据相关系数分析法,得出峰前弹性能比、破坏应变、最大峰后平均模量对脆性特征影响最大,并基于此提出了一种能够反映低胶结水平MICP固化砂土脆性强弱的评价指标。经试验证实,该指标能够准确反映不同胶结水平和围压水平下MICP固化砂土脆性特征变化趋势,以及纤维加筋对其脆性的改善。
其他文献
石墨相氮化碳(g-C3N4)是一种化学性质稳定的半导体材料,因其在可见光的激发下能产生大量自由基,对水体中环境污染物有较好的光催化降解作用,因此其在环境治理中比二氧化钛具有更广阔的的适用性。但是常规方法制备的块状g-C3N4电子空穴复合率高,同时,二维结构堆埋也会导致C3N4的活性位点被掩蔽,从而降低了它的光催化降解能力。本论文通过两种不同的办法来制备具有高比表面积的多孔石墨相氮化碳材料。方法一通
本文从多花山竹子果实中分离纯化得31个化合物(1-28),运用现代波谱学以及量子化学计算等方法鉴定了它们的结构,其中新化合物20个(1,2,4-6,8-12,17,20-26),化合物7、8和25为存在烯醇互变的混合物,首次采用NMR计算及基于13C、~1H-NMR计算数据的DP4+分析,确定了带有柔性异香叶基支链PPAPs的相对构型,通过ECD计算方法确定了该类化合物的绝对构型。1-25均为PP
随着社会的发展进步,实践生产中亚胺的需求量不断增加。如何在低能耗、低投入下高效生产亚胺,一直都是科研人员探究的工作重点。合成亚胺的常见方法是将硝基化合物还原成胺类化合物,再与羰基化合物缩合。传统催化还原硝基化合物的催化剂主要存在不易分离、成本高、选择性差等缺陷。因此,设计和开发高效催化硝基化合物还原的催化剂是研究重点。本文通过在不同氧化物上负载镍基纳米颗粒,制备含碳氮材料的催化剂,研究金属纳米粒子
环金属钌配合物结构中Ru-Cσ键的形成使得其较经典的多联吡啶钌配合物Ru(bpy)32+(bpy=2,2’-联吡啶)具备更加优秀的光物理化学性质。碳阴离子的引入改变了配合物的HOMO,使其由原本定域在金属中心的HOMO转变为C^N配体和金属中心的混合,并伴随着大幅的吸收红移。由于该类化合物中金属→配体的电荷转移跃迁(MLCT)吸收通常位于500 nm以上,且可通过对其结构进行个性化修饰实现功能化,
5,6,7,8-四氢吲哚嗪结构广泛存在于具有重要生物活性的天然产物和合成分子中,其高效合成新方法的发展已成为有机合成领域的研究热点之一。环丙醇作为高烯醇金属盐和β-烷基自由基的等价物,可与芳环反应实现芳环的C-H官能化,但环丙醇与富电子芳环的自由基反应尚未有文献报道。在本论文中,我们从商业可得的手性氨基酸出发,经Clauson-Kass环合及Kulinkovich环丙烷化反应制备带有吡咯环的环丙醇
阿尔茨海默症(Alzheimer’s Disease,AD)是一种最常见的神经退行性疾病,根据World Alzheimer Report 2018,截至2018年全球患病人数已高达4700万,严重威胁着老年人的身心健康。AD的主要临床特征为认知功能障碍,主要表现为学习、记忆能力的下降。AD患者脑内淀粉样斑块在细胞间质的堆积、神经纤维在细胞内的缠结以及脑内神经元丢失伴胶质细胞增生,最终导致认知障碍
目的探索超声造影(contrast-enhanced ultrasonography,CEUS)定量参数和参数造影剂到达时间成像(Parametric micro-flow Imaging,P-MFI)分析在鼻咽癌(Nasopharyngeal Carcinoma,NPC)和炎性病变中的诊断价值。材料与方法建立人鼻咽癌CNE-1细胞株裸鼠异种移植模型(CNE-1组)和松节油诱导的裸鼠皮下炎症模型(
卟啉由于其独特的结构和性质,受到各个相关领域科研工作者的青睐。其中带有正电荷的咪唑化合物被用于光催化或电催化氧化水、通过环酯化反应或电催化还原固定二氧化碳,这都与能源科学密切相关。以卟啉为骨架的笼状分子不仅具有超分子主体化合物的特殊空腔,而且还结合了卟啉特殊的光电功能。本论文在高正电荷多臂多功能咪唑鎓盐卟啉及其配合物、高电荷三唑类卟啉有机笼方面做了以下工作:首先,合成了三种可产生N-杂化卡宾(NH
研究背景和目的:绝经后骨质疏松症和其他溶骨性疾病通常是由破骨细胞增多和/或破骨细胞骨吸收功能增加引起,最终导致骨量过多丢失。破骨细胞是源自骨髓中造血祖细胞的多核细胞,它们通过融合前体细胞形成,并在骨吸收中起主要作用。成年人体内骨骼的维持主要依靠骨重塑过程,骨重塑是陈旧的骨组织被破骨细胞重新吸收,然后由成骨细胞在腔隙中形成新生骨组织,以此维持骨骼的稳定及骨量的动态平衡。因此,破骨细胞对于正常骨骼发育
大数据和人工智能技术推动着各行各业都朝着“数字化”和“智能化”发展,政务领域也不例外。虽然政务大数据中蕴含了大量有价值的信息,但其中也存在大量无效信息,让真正有用的数据难以得到有效的利用。同时,传统的基于关键词匹配的政务问答系统,也正向基于知识图谱的智能政务问答系统转型。知识图谱作为大数据时代的产物,其主要作用是整合数据资源,从海量的数据中提取有用的信息。基于知识图谱构建的智能问答系统,能够有效解