论文部分内容阅读
钢结构高等分析的多杆段单元法钢结构具有自重轻、抗震性能好、施工速度快、综合经济效益好等诸多优点。随着我国钢产量与质量的不断提升,钢结构越来越多被应用于建筑工程中,尤其是在高层建筑中,钢结构所占的比例上升很快。
在当前各国的钢结构设计规范中,极限状态设计的概念已经得到普遍应用。然而至目前,极限状态设计主要限于单个构件和简单结构,还没有一种实际而成熟的结构分析方法可以用于实际结构的整体极限状态设计。目前普遍的结构设计方法是结构整体按一阶弹性分析,构件按极限状态理论设计。这种方法的主要局限性在于:(1)结构内力计算模式与构件承载力计算模式不一致。(2)没有考虑非弹性内力重分布,不能精确考虑结构系统与结构构件之间的相互作用,从而不能准确估计整个结构的极限承载力。
钢结构的高等分析是一种新的结构设计方法,试图解决结构分析与构件设计之间的不协调。钢结构的极限状态包含整体与构件、强度与稳定性之间的交互作用。为了实现刚结构的高等分析,在分析模型中需要考虑几何非线性、材料非线性以及结构的初始缺陷、半刚性连接、残余应力等诸多因素。
钢结构高等分析的本质和基础是二阶弹塑性分析方法。目前应用于钢结构的二阶弹塑性分析的方法主要有两类:塑性区法和塑性铰法。塑性区法是沿结构构件长度方向离散成有限单元段,同时在截面方向再细分成许多纤维单元。塑性区分析可以包括分布塑性、残余应力、初始几何缺陷,可以认为是二阶弹塑性分析的“精确解”,但缺点是过于复杂,很难应用于大型结构的分析。塑性铰法比较简单,采用集中塑性的概念,因而不能考虑塑性在截面上的扩展以及沿杆长方向的塑性分布。塑性铰法中集中塑性的假定往往会过高估计结构在非弹性阶段的承载力和刚度,在精度上不是特别理想。
本文的主要目的是实现一种新的钢结构高等分析方法,一种既精确又高效的二阶弹塑性分析方法。为此,本文提出了钢结构弹塑性分析的多杆段(3段,多杆段阶形变刚度简称多杆段)单元法。主要思路如下:针对塑性区法将结构构件沿长度方向离散成有限单元段,同时在截面方向再细分成许多单元,计算工作很大的缺点,通过一些假定得到各个杆段的刚度,使每个结构构件只需沿长度方向离散成有限单元段,从而大大地缩小计算工作量。各个杆段的单元刚度可以依据截面的弯矩一轴力一曲率关系式得到,而这种关系可以通过平截面假定得到精确的表达。在此基础上,通过推导,直接求得多杆段单元的单元刚度,实现整体分析时一个构件用一个单元来模拟,进一步提高计算效率,且精度和塑性区法基本一致。
本研究按以上思路展开。构件出现塑性后,将变成刚度变化的构件,为了表示这一刚度变化,可以将构件视为多(3)段阶形变刚度的构件,当段数足够多时,例如3<,3>=27段(27阶形变刚度杆)时即可认为可足够近似地表示其刚度的实际变化。为此,必须先研究三杆段(即n=1)阶形变刚度杆件的刚度方程,并作为本文工作的基础。
首先,本文推导了三杆段阶形变刚度杆件单元(以下简称三杆段单元)的刚度矩阵。三杆段单元能显著改善基础单元的性能,采用三杆段(每段等刚度)单元,而每杆段单元用精度较差的三次式单元进行弹性梁柱分析的精度与稳定函数的精度基本一致。另外,三杆段单元可以很方便1单元/构件分析钢一混凝土组合结构的弹性二阶问题。
接着,提出弹塑性二阶分析的多杆段单元法。将沿杆件长度截面刚度任意变化的构件近似视为多段截面阶形变化(段数由精度需要确定)的杆件,利用弹塑性状态下的截面上的弯矩-轴力-曲率关系式计算杆段进入塑性后的刚度折减系数。用曲率法求得典型构件受荷时的曲率分布图,分别用9、27段阶形变刚度等长杆段来模拟一个构件,与曲率法的结果进行比较,确定划分27杆段为合适的划分数。循环套用13次三杆段单元计算公式即可得到27杆段单元(27段阶形变刚度杆单元简称27杆段单元)的刚度系数,在整体分析时实现了 1 单元/构件。多杆段单元的弓形弯曲影响计算方法采用复化Newton-Cotes方法精度最好,与精确解结果一致。算例表明,本文的27杆段单元分析结构的精度与曲率法和塑性区法很一致,且该方法比塑性区法除多一个小挠度的假定外,其它和塑性区法的假定是一致的,因此用27杆段单元分析结构具有良好的精度是可信的。对多杆段单元的计算效率进行了分析对比,本文的多杆段单元在单元刚度生成方面比传统的子结构方法有明显的优势,杆段数越多,优势越明显。本文的27杆段单元生成一个单元刚度矩阵所需的时间仅是用子结构方法凝聚内部自由度生成单元刚度所需时间的1﹪左右。
最后,在多杆段单元中考虑其它各种非线性因素,实现结构的高等分析。半刚性节点是钢结构重要特性之一,本文在弹塑性二阶分析的多杆段单元基础上推导了带有非线性节点刚度的单元刚度矩阵,分析了半刚性对结构性能的影响。在各国的规范中,对初始几何缺陷都有明确的规定,在结构的非线性分析中,考虑初始弯曲的方法有直接缺陷法和等效荷载法。本文建立了具有初始弯曲几何缺陷的多杆段单元模型,可以直接模拟构件初始弯曲对结构性能的影响。残余应力对结构性能的影响很大,本文的多杆段单元法可通过构建截面含残余应力分布的弯矩一轴力一曲率关系式来直接考虑残余应力对结构性能的影响。通过算例与其它方法比较,表明本模型符合高等分析的要求。