论文部分内容阅读
三维空间无障碍TDOF(Three Dimensional Obstacle-Free)机器人作为机器人领域的一个重要分支,一直是仿生机器人研究关注的重点。然而TDOF机器人在运动稳定性、灵活性、可靠性、电源使用时间、简约的控制系统等方面还存在着难于在短期内突破的技术瓶颈,因此对生物运动规律和生物机器人的研究近年来受到更多的重视。生物机器人已经成为机器人技术领域的重要研究方向之一。产自我国广西、云南等地和东南亚的大壁虎(Gekko gecko)体态大、行动迅速、负重能力强,适合作为生物机器人的目标对象,大壁虎卓越的运动能力,使得人工诱导大壁虎运动成为TDOF生物机器人研究的重点。像机器老鼠那样成功实现大壁虎运动的人工诱导将对TDOF机器人的研究产生深远影响!为此,作为行为诱导的基础,就需要了解和研究大壁虎脑区运动相关核团的功能、空间分布、相互联系及其神经电信号的时空编码。然而,目前罕见大壁虎运动相关脑区的研究报道,现有对大壁虎脑的研究也绝大部分集中在端脑和间脑的神经解剖方面,这促使我们对其运动方面的中枢调控系统开展一系列的基础研究。本工作首次建立了大壁虎脑立体定位方法,研制了相应的定位夹持装置,填补了该领域的空白。通过大壁虎脑图谱的初步制作、脑内核团的损毁以及脑内特异性运动核团的空间定位等诸多实验验证:该装置与通用脑立体定位仪相匹配,定位准确、操作简单,适于不同大小的成年大壁虎的脑部实验,能够满足大壁虎脑功能的研究需要。以所建立的大壁虎脑立体定位技术为基础,本文探索了大壁虎脑图谱制作的一些关键技术,进行了大壁虎脑图谱的初步制作;采用电生理学方法,运用金属微电极对大壁虎脑区施加电刺激,详细观测了浅麻醉状态下电刺激大壁虎中脑相关脑区对运动行为的影响,初步确定了大壁虎中脑参与运动行为的发起和转向调控;根据麻醉状态下的实验结果,进行了脑内微电极刺激对自由状态下大壁虎运动行为人工诱导的探索,成功地诱导出左、右转向的运动行为。实验进一步采用辣根过氧物酶(horseradish peroxidase,HRP)束路示踪和谷氨酸化学刺激等方法,对中脑运动区域的细胞构筑进行了研究,初步确定了大壁虎中脑运动区,证实中脑在大壁虎运动调控中起着重要作用。本文建立的大壁虎脑立体定位的方法和装置为大壁虎脑功能的相关研究奠定了基础;通过急性、慢性实验进行了大壁虎中脑运动脑区的探索,初步实现了大壁虎左右转向的运动诱导;研究首次发现大壁虎中脑与运动行为密切相关,通过刺激脑内相关的核团可能实现对大壁虎部分运动行为的人工诱导,这为揭示大壁虎运动行为的神经调控和人工诱导大壁虎运动提供了重要的信息。