论文部分内容阅读
HIsmelt熔融还原炼铁工艺可全部使用粒度低于6mm粉矿、粉煤作为原料使得原料成本大幅降低;该工艺无需焦化、烧结、球团工艺,可大幅降低环境污染,符合当前我国钢铁行业日益严格的环保政策要求;基于其核心设备熔融还原炉内具有一定的氧化性,并可冶炼低品位高磷铁矿的特点,使得该工艺生产的铁水Si含量接近零,P含量极低,S含量偏高。该工艺是目前全球极具影响力和投资前景的非高炉炼铁工艺之一。针对HIsmelt工艺所表现出的特征,从铁矿碳还原的热力学理论分析出发,确定还原1吨铁,需要322kg的碳素(其中187kg用于做还原剂,135kg用于发热剂)和175Nm3的氧气。为了提高渣铁间磷分配比,热力学理论要求炉渣中氧离子活度a3/2O2、FeO活度(或CO2/CO分压比)越高越好,而要求渣中磷酸盐活度系数γPO43-越低越好。对于HIsmelt工艺的铁矿石预还原环节,利用未反应核模型分析确定了过程的限制性环节。通过XRF、XRD、TG-DSC等检测方法研究了褐铁矿物理化学性质、焙烧过程和性能、以及在氢气中还原的转变过程,确定了褐铁矿在不同条件下的反应机理。研究发现还原过程的限制环节是还原气在还原产物层的内扩散。实验室模拟了HIsmelt工艺SRV(Smelting Reduction Vessel)中高磷钛磁铁矿球团的熔融还原过程,研究了还原温度、碱度、C/O(碳氧比)、还原时间与还原率的关系,及铁液中C、P和S含量对还原过程的影响。实验发现反应前10分钟内,高温条件可以促进脱磷反应的进行。实验得到最佳脱磷、脱硫效果的条件是碱度R=1.3、C/O=1;C/O在1~1.4区间时,随碳氧比升高,铁液中硫含量降低。基于炉渣离子-分子共存理论(IMCT),建立了 HIsmelt工艺的SRV中多元渣系渣-金间的磷、硅分配比的热力学模型,并用目前运行的HIsmelt工厂实际生产数据进行了验证发现,热力学模型计算所得的磷、硅分配比与实际生产数据非常吻合;通过热力学理论分析了炉渣组元对脱磷、脱硅的贡献率发现,炉渣组元的协同作用对磷、硅分配比有显著影响,形成3CaO·P2O5对脱磷的贡献率为 99.7%,而形成 2CaO·SiO2、CaO·SiO2、CaO·MgO·2SiO2、2CaO·Al2O3 ·SiO2、CaO·MgO·SiO2 对脱硅的贡献率分别为 22.81%、19.92%、18.24%、16.22%、12%。通过IMCT理论分析研究了目前在中国某企业运行的HIsmelt流程,同时使P、Si分配比到达最大值的炉渣所对应的最佳成分为29~30%Si02、12~13%A1203、40~42%CaO、6.5 或 9%MgO、5~6%FexO,通过热力学理论得到的磷、硅分配比模型计算了该渣系所对应的铁液中[%P]为0.024、[%Si]为0.011,与企业实际数据完全一致;由此模拟预测了利用高磷钛磁铁矿、褐铁矿P、Si的分配比和未来冶炼的最佳渣系构成,以及对应的最佳铁水中P、Si含量,对于高磷钛磁铁矿冶炼SRV中渣系的最佳成分为:33~35%Si02、8~9%Al2O3、40~42%CaO、9%MgO、6~7%FexO,对应铁液中的[%P]、[%Si]含量分别为0.034、0.0023;对于褐铁矿冶炼SRV中渣系的最佳成分为:33~35%Si02、10~13%Al2O3、40~42%CaO、9%MgO、6~7%FexO,与此对应的铁液中的[%P]、[%Si]含量分别为0.042、0.0028。对HIsmelt工艺主反应器熔融还原炉SRV进行数值模拟,研究SRV内部铁水和熔渣的活动状况,考察炉顶喷枪气流入射角度对SRV内部气-液及渣-金运动的影响,完成对HIsmelt工艺SRV冶炼过程流程的理论分析,为HIsmelt工业生产提供强有力的过程分析和风险管理保障。