7075铝合金薄壁件加工工艺参数多目标优化

来源 :西安工业大学 | 被引量 : 0次 | 上传用户:zhengafei1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
铝合金薄壁件具有质量轻、可以制作复杂结构等优点,被大量用于航空、航天等领域。但铝合金材料因硬度较低和薄壁件刚性太弱等因素直接影响了其加工质量与加工效率。理论分析与实验研究表明,合理的选择刀具几何参数(前角)与切削参数可以明显的提高加工质量与加工效率。本文以7075铝合金薄壁件为研究对象,通过有限元仿真与实际试验相结合的方法,探究工艺参数对其加工性能的影响规律,以达到提高加工质量与效率的目的。主要研究内容如下:(1)对于目前铝合金薄壁件加工中的产生的问题,结合课题研究目的与对国内外文献的总结,确定了课题主要研究内容与研究方案,其中包括技术路线、试验方法与关键技术等。(2)基于金属切削理论基础与有限元技术的基本思想,利用ABAQUS有限元仿真软件建立7075铝合金切削模型。该切削仿真模型考虑了刀具前角、切削速度、切削深度和每齿进给量4个因素。并对每个因素选取5个水平进行单因素数值模拟,探究切削加工工艺参数对切削力与切削温度的影响规律。利用正交试验表进行了正交试验,量化分析了各个因素对切削力与切削温度的影响程度。(3)利用五轴高精度磨床磨制了后期试验特定几何角度刀具,并采用响应曲面法中的Box-Behnken试验设计方法设计27组铣削试验。该实验以薄壁框类零件为加工对象,通过三坐标测量仪与表面粗糙度测量仪对试验加工后的7075铝合金薄壁件变形量与表面粗糙度进行测量,建立了薄壁件变形量与表面粗糙度关于工艺参数的二阶多项式预测模型,验证了预测模型的正确性;最后,通过响应面分析刀具前角与切削参数对薄壁件铣削变形量和加工表面粗糙度的影响。(4)基于上述研究工作,建立了工艺参数优化模型。优化模型以切削变形与表面粗糙度的二阶多项式预测模型为优化基础,以7075铝合金薄壁件的最小变形量和最大材料去除率为目标,以加工表面粗糙度值为约束条件。通过以遗传算法(Genetic Algorithm,GA)对优化模型的求解,得到了工艺参数的多目标优化结果。最后,通过7075铝合金薄壁框类零件铣削试验与测量结果验证了相关方法的有效性。
其他文献
活塞是发动机的重要零部件,长期在高温高载荷下工作,主要采用Al-Si系活塞合金制造,随着高功率密度柴油发动机的发展,现有常规Al-Si系活塞合金难以满足其苛刻工况条件的使用要求。陶瓷颗粒增强铝基复合材料是最具前景的下一代活塞候选材料之一,TiC颗粒作为颗粒增强体具有诸多优异性能,但是TiC在Al-Si合金中的稳定性一直制约其发展。因此探明TiC在Al-Si熔体中的分解过程和机理成为解决其稳定性的首
近年来计算机硬件能力得到不断地提升,物联网、人工智能等不少领域也取得了长足的进步,其中嵌入式Internet技术研究也取得了一定创新突破。然而传统的TCP/IP协议栈中协议众多,占用内存大,很多嵌入式设备无法满足其苛刻的资源需求,现有的轻量级网络协议栈虽然占用内存少,但是有着应用环境特定、缺少实现某些协议和忽视了对数据缓冲区设计等问题,这也意味着不能直接使用现有的轻量级网络协议栈。本文基于这个背景
在精密仪器与设备的生产加工中,零件缺陷检测至关重要,但一些传统的检测方法已无法满足现代自动化的检测需求。随着自动检测技术的不断发展,基于机器视觉检测技术的应用也更加广泛。本文以某导弹**零件为研究对象,针对零件整体直径尺寸的测量和零件内孔数量、位置及面积大小的缺陷,研究了基于机器视觉的零件缺陷检测系统,针对此类型的零件检测提出了一种基于规则边缘改进的快速模板匹配算法,设计搭建了基于机器视觉的某零件
Al-Si系合金是制造发动机活塞的首选材料之一。目前,通过合金化以及热处理手段对Al-Si合金的研究主要集中在使用传统的T6热处理工艺,研究合金化对合金中金属间化合物的影响,而对α-Al基体的影响研究较少。另外合金中复杂多样的第二相的存在使研究单一因素对Al-Si活塞合金的工作复杂化。因此,本文以马勒活塞合金中α-Al基体为研究对象,制备接近α-Al基体成分的合金Al-1Si-1Cu-0.5Mg,
学位
CNC齿轮测量中心控制系统是影响齿轮测量中心测量性能的关键所在。本课题采用SoC FPGA芯片从系统硬件开发角度出发实现控制系统的多种控制功能,全面提高控制系统的精度、稳定性和集成度。论文的主要研究内容是基于FPGA的齿轮测量中心控制系统的硬件接口电路设计及FPGA内部逻辑开发。本文以SoC FPGA核心板为处理与控制的核心进行系统硬件接口电路设计,主要包括测头A/D接口电路、光栅型测头电路、通用
随着现代战争的复杂化,具备高精准攻击性能的智能弹药在战场上的应用需求日益增加,随之对目标探测与识别技术提出了更高层次的要求。由于雾霾、雨雪及烟尘等恶劣环境会对目标探测造成严重干扰,导致单一探测技术的武器获取目标信息不完整,易出现漏测、误测等现象。针对该问题,本文采用毫米波/红外复合探测技术,充分发挥其抗干扰、反隐身、全天候等优势,对地面装甲目标的精确识别方法展开深入研究。首先,基于复合探测原理,建
内置式永磁同步电机(Interior Permanent Magnet Synchronous Motor,IPMSM)是机械控制系统中最为重要的电机选择之一。在IPMSM的矢量控制系统中,电机的最大起动转矩与转子位置检测精度有关。当位置检测误差较大时,电机带载能力削弱,会导致电机起动失败甚至反转。因此,对于高性能的车用驱动控制系统,高精度、强鲁棒性的位置检测系统极为重要。然而,电动汽车运行工况复
二硫化钨(WS2)因其优异的光电性能近年来被研究人员所关注。其拥有良好的延展性、柔软透明的特性和高的载流子迁移率。同时具有带隙,能提供较低的截止电流,较高的开关比。WS2晶体薄膜在场效应晶体管、光电探测器、气敏传感器等领域具有广阔的发展前景。但有关WS2晶体薄膜的可控制备与器件构建目前仍处于起步阶段。本文研究化学气相沉积法(CVD)制备单层WS2晶体薄膜的工艺,并且研究了不同转移方法制备基于SiO
Al-Si合金由于其具有较高的比强度和导热性,较低的热膨胀系数和易于加工等优异性能,广泛应用于汽车和坦克发动机的热端部件中。随着发动机向高转速、高性能的方向发展,对材料的机械性能和热防护性能要求更为严苛。然而,仅靠铝硅合金本身很难满足日益增长的工况需求。在不改变基体材料性质的前提下,对其进行表面处理是行之有效的手段之一。然而单一涂层在一定程度上能提高其性能,但在面对复杂工况条件下综合性能的提高仍显