论文部分内容阅读
黄铁矿是自然界分布最广的硫化矿物之一,黄铁矿中常常富含Co、Ni等复杂元素,是提取这些元素的主要原料;黄铁矿常载金,与其它矿物伴生,在黄金冶炼和其它硫化矿物浸出的过程中,扮演重要角色。黄铁矿是自然界存在最多的天然半导体,因为晶格缺陷呈不同的半导体类型,而不同半导体类型的黄铁矿在提取有价元素和矿物浸出过程中扮演不同角色。研究不同类型的黄铁矿的性质有十分重要的意义。本文采用MS中的castep模块,分析不同半导体类型黄铁矿的成因,并选用自然形成的较纯净的不同半导体类型的黄铁矿,分别考察其在无菌条件下和有菌条件下电化学行为,分析两种半导体类型的黄铁矿的电化学氧化行为。Castep模块模拟显示,存在Fe原子缺失,As原子替代S原子的晶格缺陷的黄铁矿呈P型黄铁矿的性质;存在S原子缺失,Co原子替代Fe原子,Ni原子替代Fe原子呈N型黄铁矿的性质,N型半导体黄铁矿整体态密度左移,表现为还原性增强。无菌条件下循环伏安曲线研究表明,黄铁矿阳极反应过程由多步组成,首先氧化生成Fe2+和SO42-,接着Fe2+被氧化生成Fe3+。通过循环伏安曲线得到氧化还原峰的电位信息,综合各中间反应过程,黄铁矿最终被氧化成Fe3+和SO42-。Fe3+环境下tafel曲线测试表明,N型和P型黄铁矿腐蚀电流随Fe3+浓度的升高而增大,在3g/L、6g/L、9g/LFe3+条件下,N型黄铁矿的腐蚀电流分别是P型黄铁矿腐蚀电流的3.66倍、4.31倍、6.52倍。Fe2+环境下tafel曲线测试表明,N型和P型黄铁矿腐蚀电流在Fe2+浓度的升高时基本不变,在3g/L、6g/L、9g/LFe2+条件下,N型黄铁矿的腐蚀电流分别是P型黄铁矿腐蚀电流的4.75倍、4.75倍、4.74倍。有菌条件下循环伏安曲线研究表明,在有菌条件下,反应进一步复杂,极化曲线(tafel曲线)测量显示,初始Fe2+浓度为3g/L、6g/L、9g/L时,N型和P型黄铁矿腐蚀电流随着初始Fe2+浓度增加而增加,,N型黄铁矿的腐蚀电流分别是P型黄铁矿的1.38倍、1.41倍、1.20倍。有菌条件下N型黄铁矿更易于被腐蚀。无论是N型黄铁矿还是P型黄铁矿,有菌条件下更容易发生腐蚀。