基于机器学习的高脂血症的检测与分析

来源 :桂林电子科技大学 | 被引量 : 0次 | 上传用户:1igang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高脂血症是导致多种心脑血管类型疾病的重要诱因且存在很多因此产生的并发症,由于其隐匿性导致多数疾病并无典型症状,极易耽误最有效的防治时间,对人们身体的生理机能产生了巨大的危害。其中,胆固醇浓度过高表现为高胆固醇血症,进而导致血脂水平整体异常。因此,胆固醇浓度值是检测高脂血症很重要的指标。目前常用的血脂检测方法多为医院生化检测测得,不仅给被测对象造成疼痛的感觉,而且还增加了针刺部位的感染风险,且实时性较差。生物电阻抗技术作为一种无创检测技术,能很好的辨别被测对象不同的组织和器官反映出来的不同电信号,为无创血脂成分检测研究提供了新思路。现有研究表明胆固醇浓度与电阻抗呈一定的线性关系,但该实验是在体外配比胆固醇混合溶液进行的,相对人体的复杂性与各异性有一定的差距。本文提出了一种基于生物电阻抗谱的新型无创连续监测人体胆固醇浓度的方案,用于辅助医疗检测高脂血症。依据生物电阻抗测试原理设计了基于嵌入式系统的人体阻抗谱检测平台,用于无创胆固醇浓度的检测。该平台主要由信号激励模块、信号调理模块、AD采集模块等组成。信号激励模块由微处理器控制直接数字频率合成器(DDS)产生100KHz-300KHz的正弦波电流激励信号;调理电路对检测电极的输出信号进行差分放大、带通滤波等;幅相检测模块得到人体手臂电阻抗的幅值和相位角参数值,再将其转换为微控制器可以识别的数字信号。实验设计了各模块的原理图,并对其进行了仿真验证来证明检测平台的正确性。机器学习算法在疾病风险预测中所表现出来的优势远远超过传统预测方式,为降低个性化差异,本文提出了阻抗谱关系模型中加入和人体成分分析仪相关性较高的人体成分指标优化高脂血症预测模型的方法,对综合数据集进行数据预处理、特征选择以及主成分(PCA)特征降维的特征工程处理,得到一个特征变量间彼此线性无关的数据集,采用了机器学习的套索(Lasso)回归算法来建立生物电阻抗谱与胆固醇浓度的关系模型,实现对胆固醇浓度的预测,预测结果与生化检测的结果相关性为0.79,平均相对误差率是10.47%,该测量系统和回归模型在一定程度上无创检测了人体胆固醇浓度值,并正确判断了血脂有无异常,对患者实时监测血脂异常以及医疗检测起到很好的辅助作用。
其他文献
分组密码算法的设计与分析是现代密码学界的热点研究问题之一,其源起和进展在密码学界有着深远的影响。尽管分组密码已经成为主流的信息加密体制,并在多种信息系统中扮演着重要的角色,然而典型的分组密码算法通常不适用于资源受限计算环境。为了解决资源受限环境下的数据安全问题,轻量级分组密码算法应运而生。轻量级密码算法的安全性分析一直是该领域研究的难点问题。在分组密码算法的分析中包含差分攻击、立方攻击、积分攻击等
近年来,诸如新浪微博、Twitter等社交媒体的快速发展降低了人与人之间的沟通成本,成为人们倾诉情感的主要方式之一。图文并茂的多媒体融合方式尤其受到人们的喜爱,他们在微博上积极分享对事物的看法及感受。正能量的情感有利于社会和谐,反之,负能量的情感也会给社会带来一定的危害。因此,针对微博情感分析的研究有助于舆论监督和引导,具有实际的应用价值。此外,微博还被用于市场营销,对这些信息进行情感分析能更好地
随着社会科学技术的发展,制造业对检测技术的要求逐渐提高。传统的人工手动零件尺寸测量由于受到主观判断和测量工具的影响,不但检测效率低,而且抗干扰性差,通过视觉测量技术对零件进行非接触式检测逐渐受到人们的青睐,其在尺寸测量环节上有着许多人工测量无法比拟的优势,如高精度、高效率、自动化等。而基于亚像素的视觉测量技术能够在不提高系统硬件分辨率的情况下,得到比传统像素级检测更优的测量结果,减少了工业的成本。
信息技术和互联网行业的发展正逐步改变着人们的生活方式,各大平台纷纷推出智能解决方案,因此衍生出来的数据庞大且丰富,其中图数据在应用中非常广泛,如知识图谱,社交网络等,但这些图数据通常结构复杂,规模庞大,对用户的信息获取形成了挑战,传统的推荐算法虽然能缓解上述困难,但其不能有效的处理图数据信息,不能很好的捕获用户的个性化偏好,且会导致数据稀疏和冷启动问题。针对以上问题,本文采用基于图表示学习的个性化
随着互联网普及率的增加和网民规模的扩大,网络应用的种类和流量与日俱增,导致网络效率降低、带宽消耗加剧、用户体验变差。在这种情况下,如何有效的缓解网络数据拥塞是提升网络性能的重点。大象流作为影响网络性能的主要数据流量类型,数据量大,链路带宽消耗高,对大象流进行分析建模以便及时侦测是当前计算机网络和本研究的重点。当前大多数的数据中心采用基于阈值的简单模型描述大象流,进而实现大象流的侦测;一些大象流侦测
随着《中国制造2025》全面推进,三维立体视觉技术作为计算机视觉中最核心技术之一,在智能制造应用中扮演者重要的角色。例如利用三维立体成像技术实现快速、高精度和数字化在线测量,引导机器人实现智能抓取和操作。结构光投影轮廓测量技术是三维立体成像技术的重要研究方向之一。在工业生产过程中,三维重建技术会把物体的表面每一点三维坐标数字化、点云化,就能够在三维立体空间中引导机器人抓取、测量等。本文从环境中噪声
网络规模增加,接入设备多样化增加了网络管理的复杂性。传统的网络设备耦合了控制和转发功能,但由于品牌和种类的多样化,缺乏统一、开放的管理接口,维护网络全局视图的成本高,实现网络性能的全局管理和资源优化难度大。软件定义网络(Software Defined Network,SDN)通过分层的网络架构、集中控制、标准化开放接口实现了控制和转发功能的解耦,降低了网络全局视图维护的成本,解决了传统网络在性能
光刻机是制造集成电路的核心设备,随着集成电路向先进制程不断发展,集成电路制造业对光刻机套刻精度要求越来越高。运动台定位精度、重复性决定了光刻机的套刻精度,目前对运动台定位测量的工具只有激光干涉仪和光栅尺两种,光栅尺环境鲁棒性相对较好。现阶段我国对光栅尺相位信号处理系统研究较为匮乏,尤其缺乏能够应用于28 nm浸没式光刻机的高分辨力光栅尺相位信号处理技术和设备。本文针对光栅尺相位信号的第一类非线性误
自1986年由A.Ashkin等人首次完成光镊实验以来,光镊技术已广泛应用于生物学、化学、胶体科学和物理学等领域。特别是在生物学中,它被应用于操纵细胞、细胞器、病毒、细菌和DNA分子,为研究这些基本生命单位和了解其生物学功能提供了有力的工具。光纤光镊继承了光纤灵活、体积小、结构紧凑的优点,可以通过人体的天然孔口到达病变组织,从而非常好的应用于体内医疗。在光纤光镊的研究中,提高可操作性以实现多维度操
近年来,随着先进的科学和技术的迅猛发展和智能家居设备的日渐普及,智能电视逐渐成为家庭物联网的控制中枢。然而在日常使用中,传统的遥控器操控具有一定的依赖性和局限性。手势作为一种非常契合人们在日常生活中各种交流习惯的一种人机交互方式具有自然、舒适等特点,相较于借助穿戴设备,通过摄像机进行手势操作更加符合人们的日常使用需求,因此基于视觉的动态手势识别的人机交互系统对于智能电视具有很高的研究价值。目前,基