康托尔集的维数及其维数分划研究

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:sunrisekarl
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文介绍了几种康托尔集以及它们的维数,着重研究了由单调序列定义的康托尔集Ca,利用其对应序列的性质来刻画其维数,得出对于由单调非增序列定义的康托尔集Ca,其豪斯多夫维数为(此处公式省略),填充维数与预填充维数一致(此处公式省略),上盒维数为(此处公式省略),下盒维数(此处公式省略)。  本文利用h-豪斯多夫测度和h-填充测度得出的维数分划来更好地对康托尔集aC进行分类,维数分划对康托尔集的分类也可由对应序列的性质来刻画。最后我们得出结论,两个康托尔集Ca和Cb有相同的维数分划当且仅当它们相关联的维数函数ah,hb等价。
其他文献
移动渐近线算法是一类解结构优化问题的有效算法。通过一个移动渐近线函数,产生一系列简单的、可分的、且严格凸的子问题。通过解这一系列子问题逐步获得原问题的解。本文将移
本文主要考察了流行病SI模型和SIS模型平均场方程组的动态特性,重点考察了平衡点的全局渐近稳定性和分支。根据复杂网络的结构特性,分别在均匀网络和非均匀网络中分析流行病
在这篇论文中,我们主要在Banach空间中引入了几何参数或模,研究了它们的性质及其与一致非方、正规结构、一致正规结构的关系,以及其与不动点之间的联系。 本文首先引入Uβ-凸
延时微分代数方程(DDAEs)是具有时滞影响和代数约束的微分系统,广泛地应用于电路分析,计算机辅助设计,多体力学系统的实时仿真,化学反应模拟,最优控制等科学领域。然而,由于延迟微分
本文致力于研究分多段分红的对偶风险模型及二维风险模型的破产理论,主要研究了分三段分红的对偶风险模型的折现红利的期望函数,并对带有扰动项的二维风险模型的破产概率做了研
本论文基于对Smarandache问题的学习与研究,运用了初等数论与解析数论中的一些研究方法,对与Smarandache函数相关的问题进行了简单的思考,给出了一个猜想,一个渐近公式,解决了一个
学位
作为循环码的推广,由于引入了自同构映射,斜循环码的代数结构与循环码相似但有着本质的不同。自首次出现,斜循环码一直备受外界的广泛关注,成为了编码理论中的新兴代表。斜循环码
环论作为一门重要的代数学科,是代数几何和代数数论的基础。交换性是环的重要性质之一,交换性的研究有助于环的其它性质的探讨。反环的研究是交换性研究与其它环论研究的交叉,它
众所周知,数论的一个主要内容就是研究数论函数的各种性质.数论函数的均值估计问题在解析数论的研究中占有十分重要的位置,通过研究数论函数的均值我们不但可以了解数论函数的性