论文部分内容阅读
高超声速飞行器具有重要的战略意义和极高的应用价值。本文根据我国高超声速技术发展的需要,对高超声速飞行器的巡航飞行控制问题进行了研究。论文主要针对高超声速飞行器非线性、不稳定性、非最小相位特性以及多输入多输出系统耦合特性等具体问题,逐层展开研究,给出了一种有较高工程应用价值的鲁棒动态逆控制系统设计方法,实现了高超声速飞行器宽动压和宽马赫数跨度条件下三通道的稳定与机动飞行控制。具体研究内容如下:建立了通用高超声速飞行器的运动学和动力学模型以及与其飞行有关的气动参数模型,并结合所建立的数学模型对飞行器的特性进行了分析。相对于普通飞行器,高超声速飞行器具有自己典型的特点,这些特点主要体现在不确定性、非线性、耦合性以及不稳定/非最小相位特性等方面。论文在数学模型基础上对高超声速飞行器的这些特性进行了比较深入的研究,并结合研究的结论规划了总体的控制思路和控制方法。针对高超声速飞行器俯仰通道的非线性、不确定性问题,提出了一种μ综合鲁棒动态逆控制方法,即内环采用动态逆控制器外环采用μ综合鲁棒控制器的控制方法。该控制方法分两部分完成,首先将飞行器模型进行适当的简化和处理,得到仿射的非线性模型,根据时标分离的原则,将飞行器划分为快慢回路,分别设计快慢回路的控制器;然后,对系统的不定性建模,根据模型选择合适的权函数,在系统线性分式变换的基础上,完成系统的动态逆控制,以及通过D-K迭代对鲁棒控制器的求解。仿真结果表明,设计的控制器对系统的不确定性具有良好的鲁棒性。针对高超声速飞行器具有不稳定/非最小相位特性,引入QFT鲁棒非线性控制方法。在传统设计方法的基础上,将QFT设计理论向非线性和不稳定/非最小相位系统进行扩展,通过Schauder不动点定理证明了线性时不变等效传递函数在反馈系统中的可行性,通过Golubev算法利用Matlab仿真获得非线性系统的线性时不变等效传递模型,实现了非线性系统的线性化;在系统不稳定/非最小相位模型的基础上,进行重构设计,根据重构函数将边界条件进行相应的移动,在IED整形环境上利用新的稳定/最小相位标称对象进行设计,这样设计的控制器充分考虑了系统的不稳定/非最小相位特性,设计的控制器更加准确。在第3章和第4章研究的基础上,针对μ综合与QFT在高超声速飞行器控制中的局限性,提出了一种QFT/μ鲁棒动态逆控制方法。将QFT与μ综合和动态逆相结合,利用动态逆对飞行器快回路进行设计,降低系统的非线性程度,改善动态特性;将μ综合设计的控制器作为QFT设计的初始控制器,利用QFT对控制器进行再设计,以减小控制器的阶次。仿真证明,设计的控制器满足控制精度和鲁棒性要求,同时便于掌握和进行工程应用。针对高超声速飞行器侧向通道是一个具有较强耦合的多输入多输出系统,研究了一种改进型的QFT MIMO设计方法。首先对经典MIMO设计方法进行了介绍和说明,然后重点分析了该方法在多变量不稳定/非最小相位系统设计中的局限性,引出进行广义矩阵构造的必要性,然后利用一种逐层递进的设计方法,设计了侧向通道控制器,仿真表明,该控制方法能有效的抑制通道间耦合,是一种切实可行的控制方法。