几类微分—差分方程的守恒律与Darboux变换

来源 :吉林大学 | 被引量 : 3次 | 上传用户:liongliong469
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文主要考虑非线性微分-差分方程的守恒律与Darboux变换及相关问题.全文共分五章.第一章主要介绍背景知识与涉及到的概念、理论和方法.第二章我们考虑广义Toda谱问题和广义相对Toda谱问题.首先利用屠格式,构造了两类可积的4-field微分-差分方程族,发现这两类方程族不仅可以约化为一些已知的微分-差分方程族,而且也可以约化为一些新的方程族.其次,我们证明了其中一类微分-差分方程族是Liouville可积的.第三章我们研究三类微分-差分方程.首先对这三类微分-差分方程分别构造方程的无穷多守恒律,给出对应守恒密度与流的递推表达式.其次,利用Lax对和规范变换,构造了方程的Darboux变换.最后,应用Darboux变换,得到了方程的一些精确解,进而通过适当选择参数,得到方程的孤立子解,并画出了这些孤立子解的图像.第四章我们探讨一般微分-差分方程守恒律的存在性.首先给出一般微分-差分方程存在8)-阶守恒密度的必要条件,然后利用这些必要条件构造方程的守恒密度.作为该结果的应用,我们研究了Belov-Chaltikian格方程,Kacvan Moerbeke格方程和离散的Nagumo方程,得到如下结论:1.给出了BelovChaltikian格方程8)-阶守恒密度满足的形式;2.给出了Kac-van Moerbeke格方程8)-阶守恒密度满足的形式,并构造了方程的2-阶守恒密度以及对应的流;3.证明了离散的Nagumo方程不存在守恒密度.第五章是总结与展望.
其他文献
经过多年发展,美国已建成由进入太空、利用太空、控制太空等系统构成的完备太空装备体系,其装备能力保持世界领先优势。对美国太空装备进行梳理,结合对美国天军(USSF)当前组织架构进行分析,其天军装备体系可由太空态势感知装备、天基信息支援装备、太空攻防装备和航天运输装备四大类构成,具备天地一体、全球覆盖的态势感知能力,具备遂行多域作战信息支援能力,具备软硬杀伤、攻防兼备的太空对抗能力,以及不同轨道
期刊
氯氮平属二苯氧氮平类抗精神病药物,一般都认为无锥体外系副反应,我们遇到三例明显锥体外系副反应者,现报告如下。例一,男、58岁,干部。1986年8月14日以独语、懒散、言语杂乱,认为领导迫害14年入院。经检查诊断为精神分裂证偏执型,口服
期刊
近几年,随着我国各个行业的稳定发展,中小企业成为促进我国经济稳定发展及技术改革创新的关键,是我国国民经济发展中不可或缺的一部分,因此保证中小企业健康发展非常必要。但是,融资困难成为影响各个企业运营发展的重要因素。怎样才能在保证以银行为主体的融资方资金安全的情况下,配合适宜的资金给一些管理体系规范、发展方向明确的中小企业,已经成为社会各界关注的重点。文章主要从供应链金融视角下对中小型企业的融资问题进
在自然环境下,微生物可以针对其所处的外部环境的变化而发生行为改变,这是其赖以生存的重要条件。而微生物的行为改变过程是由体内的趋化信号转导网络和运动结构协同完成的,这个过程是非常复杂的。我们以大肠杆菌为研究对象,在分子和细胞水平上,综合利用光学显微成像技术、基因改造技术和生物学统计模型等多种生物物理手段来研究大肠杆菌的行为改变过程,包括趋化性和运动性。研究大肠杆菌行为改变的过程是基础研究的重要科学问
本文关心几种带特定形状无界散射体的时域正反散射问题,我们分别建立数值方法对正反问题进行求解,并给出相关的分析.散射问题主要研究的是散射体对波场的散射情况,正问题通常是指已知入射波(声波或电磁波)和散射体信息,求解由于散射体存在而产生的散射场或远场,而反问题则是已知入射场和部分散射场或远场数据,来重构散射体的位置和形状.在各类散射问题中,本文关心的是不可穿透散射体对声波的散射.我们的分析在时域进行,
众所周知,现实世界中的许多现象都具有周期性.自法国数学家Poincare和俄国数学家Lyapunov以来对于连续动力系统的周期解存在性的研究一直是动力系统研究的中心课题之一.然而,并非所有的自然现象都能用连续的系统或者离散的系统来描述.目前,一些连续系统的理论和方法己经发展到了时标上,例如[10,78,55,53].时标是R中的任意非空闭子集,通常表示为T.时标理论的建立主要是为了研究连续和离散混
现实生活中,多数物理,医药,金融等问题均可由偏微分方程(PDEs)或者随机偏微分方程(RPDEs)来描述.很多时候,人们不只关心PDEs或者RPDEs解本身的性质,更关心能否通过控制方程中的某些变量,使得另一些变量达到预期的状态,同时保证代价最小,这就是典型的PDE或者RPDE最优控制问题.由于实际需求的驱动,系数确定和系数随机情况下的PDE最优控制问题得到了广泛的研究和关注([44,56,58,
氯氮平是临床应用较广泛的一种新型强效抗精神病药物,氯氮平引起意识障碍与粒细胞减少的副作用不乏报道,但该药引起锥体外系反应,实属罕见,现将所见一例报道如下:患者李××,男性,28岁,农民,因失眠、乱语、哭笑无常四月余,于1993年10月23日首次住院,入院时躯体及神经系统检查未见异常,诊断为精神分裂症。入院后用氯氮平50mg/次,每日2次,3日后改用氯氮平100mg/次,每日2次,于第5天上
期刊
里德堡态指的是原子或分子的一种状态。在该状态下,原子或分子中的一个电子被激发到主量子数较高的轨道。人们发现这些原子或分子里德堡态有很多奇特的性质,利用这些性质在很多研究领域得到了广泛的应用。原子分子里德堡态可存在于等离子或火焰环境中,在地球电离层以及星际气体中亦可能存在。随后人们发现当原子或分子与强激光相互作用时,原子或分子也可能被布居到里德堡态。这种里德堡态激发(Rydberg State Ex
本文主要是在总结前人工作的基础上,对一类Zakharov方程,Klein-Gordon-Zakharov方程、以及Zakharov-Rubenchik方程精确周期解的求法以及这些周期解的周期性质进行了研究.同时,我们还研究了(n + 1)维耦合的非线性Klein-Gordon方程组精确周期解的求法及其轨道稳定性.首先,本文受文献[1]的启发,结合Jacobian椭圆函数方法,我们求出了 Zakha