论文部分内容阅读
基于臭氧的高级氧化技术(AOPs)在去除废水中难降解有机物方面表现出很高的效率,但臭氧制备过程能效低。脉冲电晕放电(PCD)作为氧化能效较高的一种高级氧化技术,具有原位产生并利用臭氧及羟基自由基(·OH)等氧化剂的特点,可解决上述问题。PCD应用于气液混合体系时,通过在气液界面处产生的低寿命活性氧化物质,协同气相中产生且在气-液相间传质作用的其它一些长寿命活性氧化物质及物理场作用,显著提升了污染物的氧化效率。本研究将基于PCD的氧化物种作用分配机理与污染物转化相结合,为PCD技术在水处理中的应用提供理论支撑和技术支持。本研究考察了·OH猝灭剂对三种不同属性污染物降解动力学的影响,研究短寿命及长寿命活性氧化物质在氧化有机物过程中的作用及分配,并以硫氰化物为研究对象,考察了基于PCD的污染物转化过程及影响因素。针对反应速率不同的污染物,PCD氧化过程中所需要氧化物种的种类及作用方式有所不同,根据氧化物种的需求与分配可选择适当的能量输入,即反应器条件以提高污染物的降解能效。本文分别以苯酚、草酸和腐殖酸作为研究对象,考察添加表面活性剂及非表面活性剂的自由基猝灭剂对目标污染物降解能效的影响,以及不同脉冲重复频率条件下目标污染物降解的不同表现。其中,目标污染物的降解速率具有差异性,苯酚的反应速率较快,草酸仅与·OH发生反应,腐殖酸的反应速率较慢。结果表明,苯酚的氧化既有表面产生·OH的作用,也有溶解性臭氧通过直接氧化和分解为·OH间接氧化的贡献;由于草酸氧化中非表面活性剂·OH猝灭剂破坏溶液中臭氧分解产生的·OH后,氧化能效依然2倍高于同浓度表面活性剂猝灭作用的情况,故草酸的氧化中表面产生的·OH有更大的贡献;腐殖酸对氧化剂的作用不敏感,因其本身具有一定的对·OH的猝灭作用,其氧化过程仅依赖于表面产生的·OH。研究表明,快速的能量供应适用于仅由自由基激发氧化的有机物,例如腐殖酸类物质;针对既可以被表面产生的活性氧化物质氧化,又可以被长寿命氧化剂氧化的有机物,低脉冲重复频率的条件更加适合。实验结果证实了PCD的界面反应特征,即·OH等活性氧化物质主要产生且作用于气-液界面处。以配制的硫氰化物模拟废水为研究对象,从构建厌氧氨氧化适配条件的目的出发,考察了不同pH条件下含氮污染物经PCD处理随时间的动态转化规律,以及SCN--N降解副产物(SO42-和HCO3-浓度)对NH4+-N降解的影响,并拟合了不同条件下NH4+-N的降解动力学。结果表明,PCD技术利用原位产生的O3和·OH能氧化包括SCN--N和NH4+-N在内的还原态含氮化合物为NO3--N,pH的增高有利于氧化反应的进行;反应过程中产生的SO42-和HCO3-对NH4+-N的氧化具有显著的抑制作用,HCO3-的抑制效应要高于SO42-。研究表明,对于高SCN-废水的处理,PCD技术可作为厌氧氨氧化及其配套组合工艺的预处理技术,在规避毒性抑制与构造水质特征方面表现出优越性。综上所述,基于PCD对SCN-的快速氨解,通过反应条件的调控可实现将PCD作为预处理工艺与厌氧氨氧化结合用于总氮的去除。结合不同猝灭剂的作用,总结了污染物降解的动力学规律,并阐明氧化物种的作用及分配情况,在一定程度上阐释了PCD应用于水处理的普遍规律,验证了PCD的界面反应特征,为PCD的工业化应用提供了理论参考。