【摘 要】
:
基于铁磁共振的射频和微波器件被广泛地应用于通讯、信息、航空航天以及军事等领域,科技的不断发展对器件的共振频率提出更高的要求。软磁材料的铁磁共振频率决定了磁性高频器件的工作频率上限。随着当今集成电路技术的发展,无外加偏置磁场(自偏置)条件下的高频软磁薄膜材料成为急需材料。近年来,针对具有磁各向异性的自偏置高频软磁薄膜材料开展了大量的研究工作,如利用倾斜溅射、成分梯度溅射、铁磁/反铁磁层间耦合、磁电耦
论文部分内容阅读
基于铁磁共振的射频和微波器件被广泛地应用于通讯、信息、航空航天以及军事等领域,科技的不断发展对器件的共振频率提出更高的要求。软磁材料的铁磁共振频率决定了磁性高频器件的工作频率上限。随着当今集成电路技术的发展,无外加偏置磁场(自偏置)条件下的高频软磁薄膜材料成为急需材料。近年来,针对具有磁各向异性的自偏置高频软磁薄膜材料开展了大量的研究工作,如利用倾斜溅射、成分梯度溅射、铁磁/反铁磁层间耦合、磁电耦合等。然而,自偏置铁磁共振频率10 GHz以上的软磁薄膜依然很难获得。最近本课题组发现,在具有强层间耦合作用的铁磁/非磁/铁磁(FM/NM/FM)三明治薄膜中,通过调控铁磁层之间的磁矩相对取向,可以得到铁磁共振频率高达18 GHz以上的纯光学模共振,且具有很高的磁导率,有望成为一类具有实用价值的高频软磁材料。因此,研究层间交换耦合机理,调控光学模共振频率和磁导率,成为重要的研究课题。本论文围绕FeCo基磁各向异性三层膜中光学模的形成和调控机制,从样品制备方法、中间非磁层厚度以及通过磁电耦合效应调控等多方面入手开展了一系列工作,主要内容概括如下:(1)通过倾斜溅射法和成分梯度溅射法两种工艺分别制备了FeCoB/Ru/FeCoB(tRu=3.0A)三层膜,均观察到铁磁共振增强现象。倾斜溅射法制备的FeCoB/Ru/FeCoB三层膜相比单层FeCoB具有更好的单轴磁各向异性,各向异性场HK从85 Oe增大到417 Oe,对应的零磁场铁磁共振频率fr从4.23 GHz提高到8.36 GHz,阻尼损耗α仍保持在0.012。特别是由成分梯度溅射法(CGS)制备的三层膜获得了稳定的超高频纯光学模铁磁共振。CGS-FeCoB单层薄膜HK约为90 Oe,但由于强反铁磁耦合作用,三层膜的交换耦合场JICE高达2534 Oe,使得光学支共振频率骤增到18.68 GHz,且初始磁导率μi仍保持在13以上,达到了可实际应用的水平。还发现在特定转换磁场下,其铁磁共振模式可在超高频光学模共振和低频的声学模共振间无损切换,这为频率可重构微波器件设计提供了新的可能。(2)探究不同中间层厚度对FeCoB/Ru/FeCoB三明治薄膜中铁磁层耦合方式以及铁磁共振性质的影响。以CGS-FeCoB单层膜为基础,制备了一系列不同Ru厚度的FeCoB/Ru/FeCoB样品,发现铁磁耦合方式随tRu的变化存在振荡关系,在反铁磁耦合与铁磁耦合间变换,并伴随着耦合强度J的快速衰减。在2.1 A≤tRu ≤15.0A区间范围内均可同时观察到声学支与光学支铁磁共振。特别的,在tRu=3.0A的双线性型耦合(bilinearcoupling)下,得到了单纯的光学支铁磁共振,J1高达-4.41 erg/cm2,frO 19.55 GHz。(3)在(011)切向的PMN-PT单晶衬底上,制备了具有纯光学模共振的FeCoB/Ru/FeCoB三明治薄膜,探究了磁电耦合效应对光学模共振性能的影响。在磁电耦合效应的作用下,三层膜样品的易轴方向随外加电场的增大发生逆时针旋转,且转角大小可通过电场来控制。在外加电场达到10 kV/cm时,易轴方向旋转了 90°,实现了光学模难易轴的互易,并基本保持了原有的高频微波性能,这为光学模工程提供了新的角度。(4)设计并制备了基于光学模共振单元的多种多层膜结构:(FeCoB/Ru)n、[(FeCoB/Ru/FeCoB)/MgO]n 以及[(FeCoB/Ru/FeCoB)/ZnO]n 超晶格结构。最终在[(FeCoB/Ru/FeCoB)/ZnO]n超晶格厚膜中,磁性层的总厚度达到了 250 nm,有效提高了光学模共振样品的磁能密度,并且自偏置光学模共振频率保持在13.5 GHz以上的,初始磁导率高于15。样品在磁场调控下仍旧可以实现双模式铁磁共振的可逆切换:低场区(0-114Oe)为高频光学模共振,高场区(>1140e)转变为低频的声学模共振(约4.5 GHz)。该超晶格结构将为设计和制造多功能集成电路器件提供更大的自由度。
其他文献
本论文主要研究了与图的染色有关的三类问题:反魔幻标号、邻和可区别染色和染色图的几个极值问题。它们都是图的染色问题,是最近研究的几个热点问题。首先,Hartsfield和Ringel在1990年提出了反魔幻标号问题:能否对任意一个含m条边的连通图G用{1,2,…,m}对所有边进行一对一标号,使得每一个点v所关联边的标号之和都不同。作为反魔幻标号在定向图上的推广,Hefetz、Mutze和Schwar
在本文中,我们研究了两类系统(Hamilton系统和耗散系统)响应解的存在性问题.响应解指的是与系统的驱动有着相同频率的拟周期解.具体来说,我们研究的Hamilton模型是带有拟周期驱动的非适定Boussi-nesq方程:且满足铰链边界条件:其中ω=(1,α),α为任意的无理数.本文的证明基于修改的Kolmogorov-Arnold-Moser(KAM)定理.我们将在每一步KAM迭代过程中构造一个
根系是植物吸收水分和养分的主要器官,对植物的生长发育和逆境适应起着非常重要的作用。植物通过改变根系的结构或生长方向,可以使植物能够更好的适应各种逆境条件。植物响应其周围环境的变化而表现出根系构型的改变是根可塑性生长发育的重要体现。因此,深入研究植物根的可塑性生长发育不仅具有重要的科学意义,也为将来基于根型改良的作物育种提供重要理论基础。自然界的根系可以分为两大类,一类是以模式植物拟南芥为代表的直根
激发态质子转移是氢键动力学中最重要并且最具有代表性的一种反应。众所周知,在过去的五六十年里人们已经总结出激发态分子内单质子转移的反应机理以及其动力学行为。在光谱学方面,双荧光峰的出现是激发态单质子转移的代表性特征。然而,对于含有两个或者多个分子内氢键的体系来说,我们是很难仅依赖实验上的荧光峰现象判断其激发态行为。换言之,对于一个含有两条分子内氢键的体系来说,仅通过实验现象是很难辨别出该分子在激发态
随着信息存储技术的快速发展,人们对电子器件提出了微型化、高速度、高密度、低功耗、非易失的要求。为了满足上述要求,研究者寄希望于自旋电子器件。自旋电子器件的核心是充分利用电子的自旋自由度,克服微纳尺度下因为量子效应以及高能耗等问题造成的电子器件性能低下的难题。电子自旋具有向上和向下两个取向,通常通过样品的磁性表现出来,其自旋取向可以作为信息处理和存储的媒介。磁电阻效应一直以来都是自旋电子学的研究热点
碲化锡(SnTe)合金是最有希望成为继碲化铅(PbTe)合金之后的新一代绿色环保热电材料。SnTe与PbTe同属面心立方晶格结构,简单的晶格结构有利于载流子的输运,从而为高电导率提供了保障。SnTe具有与PbTe相类似的双价带能带结构,这为材料Seebeck系数的提高奠定了基础。但是,由于本征SnTe中存在大量Sn空位(阳离子空位),从而使得SnTe载流子(空穴)浓度较高。这致使其Seebeck系
海洋作为地球上最重要的生态系统之一,蕴含了大量的生物资源。由于海洋特有的环境因素,海洋微生物进化出了多样而且独特的生理机制来适应多变的海洋极端环境,具有多种催化活性的新型蛋白酶已经从可培养的海洋微生物中获得。很多海洋来源的活性蛋白酶已经制备成各类药用制剂用于伤口清创、血栓溶解和促进伤口愈合等方面。因此海洋微生物产的活性蛋白酶具有很大的医学应用潜力和价值。组织工程和再生医学主要是为了发展那些可为缺损
由于在结构相变、电学、磁学、光学等方面显示出丰富的特性,功能性氧化物一直以来都是物理、化学以及材料学科的研究热点,在电子信息领域有着广阔的应用前景。功能氧化物的功能性不仅体现在其电学、光学、磁学等性能的奇特性,还体现在其性能的可控性。材料的性能调控不仅能提升材料的功能性,还能帮助我们认识材料的性能与微观结构之间的关系。性能的电场调控,即通过外加电压产生的电场来改变材料的电、磁、光学性能,可以实现对
水下机器人的矢量推进技术是一种新兴的水下推进技术,能够提高机器人的运动灵活性和敏捷性,对于海洋资源勘探具有重要意义。本论文旨在克服传统多桨推进或鳍舵操纵方式存在的控制复杂、低速失稳等缺点,通过设计一套结构简单、便于操控的矢量推进机构方案,并应用于无鳍舵型水下机器人,将水下机器人的导向操纵装置和推进系统合二为一,实现水下机器人单机构多姿态的运动模式,提高水下机器人的操纵性能。论文首先通过对球面并联机
太阳射电爆发现象一直是太阳射电研究,乃至整个太阳物理研究中的重要课题。由于射电辐射的观测特征(强度、频率、谱形等)与辐射源区的磁场、等离子体、高能粒子的性质密切相关,所以射电暴可用以诊断太阳大气的物理性质,特别是爆发过程中的物理参数。对射电暴的研究可以加深对太阳磁场能量的转换与释放、高能粒子的加速与射电暴产生机制的认识。本论文从观测数据分析、线性理论和数值模拟三个方面对射电爆发相关过程与辐射机制进