基于双目视觉的堆叠零件识别与定位研究

来源 :江西理工大学 | 被引量 : 0次 | 上传用户:yyx19870907
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在智能化时代背景下,随着智能化的发展,机械手搭载视觉系统就相当于让机械手拥有了“眼睛”,促进工业制造更加智能化、柔性化。工业现场经常需要完成对无序堆叠零件定位的工作,由于单目视觉不能较好的解决这个问题,因此需要依靠人工或者振动机构将无序堆叠零件平整放置,然后利用单目视觉进行后续操作,影响了生产效率,增加了制造成本。为提高企业的生产效率,促进自动化的进一步发展,本论文针对无序堆叠问题开展了基于双目视觉的堆叠零件识别定位研究,主要研究内容如下:(1)对双目标定和手眼标定的研究。双目标定理论分析,在MATLAB上进行标定及校正实验,重投影误差为0.21像素,表明标定结果较好。通过控制机械手操纵器的端部随机平移3次,旋转1次求解手眼标定矩阵,联合机械手利用欧氏距离偏差进行定位精度验证,偏差在0.5~1.1mm,均值为0.78mm说明精度高。(2)对无序堆叠零件的预处理和分割算法研究。根据无序堆叠零件的实际工况对图像进行预处理,设计一种混合滤波器,结果表明比单一滤波器的抑制效果更好。用Canny算子对不同工况的零件图进行边缘检测,针对其无法精确定位问题提出形态学处理的彩色标记符分水岭的分割算法,用3组不同数量、不同工况的零件图进行验证,结果表明此算法分割率较高,误差率较小,效率较高,可以精确地划分出ROI区域。(3)对无序堆叠零件的立体匹配算法研究。基于前景分割、“黑洞填充”、误匹配点剔除改进的SGBM半全局立体匹配算法获取视差,实验表明该改进算法能够更好的解决弱纹理和遮挡区的匹配问题,提升匹配效果,且效率高。(4)对无序堆叠零件的三维重建及位姿获取研究。由分割结果设置ROI区域,边缘检测出边缘轮廓,利用视差计算出三维坐标,用随机椭圆法在MATLAB上拟合出空间圆获取位姿,依据零件的位置高度z和零件与相机的水平距离x制定抓取优先级。(5)搭建平台及抓取实验。通过3次采样点6次采样获取空间坐标值,差值在0~1mm,波动范围较小,说明重复定位精度高。通过6次采样点2次采样,依次计算两点的距离与实际测量距离相比,偏差小于1mm,且均值为0.3mm,说明测量精度高。通过不同数量不同堆叠状态的抓取实验,结果表明,抓取成功率为96.88%,抓取时间在1.8s~2s之间波动,实验结果良好。表明了本文系统精度高,稳定性好,具有可行性。
其他文献
随着新兴技术的不断涌现和持续应用,中国制造业在过去十年间发生了翻天覆地的变化,在不断适应多变的社会需求和激烈的市场竞争的过程中,制造型企业慢慢从以量取胜向着以质取胜发展。质量意识的不断提升,使得越来越多的制造型企业开始注重生产的规范化与标准化,标准作业指导书由此受到越来越多的关注。然而,标准作业指导书在规范作业程序的同时,自身的制作流程却没有实现标准化作业,这是因为许多企业重点着力于生产线的优化改
目的研究行电子输尿管软镜下钬激光碎石术治疗的肾结石患者开展手术室人性化护理干预的效果。方法选取玉山县人民医院2019年8月—2020年1月期间收治的肾结石患者56例为研究对象,均接受电子输尿管软镜下钬激光碎石术治疗,采用双盲随机法分为研究组(28例)及对照组(28例)。对照组行手术室常规护理,研究组患者在此基础上接受手术室人性化护理干预,对2组患者术后恢复情况进行比较分析。结果研究组患者术后离床及
随着GNSS等新技术的发展,大坝变形监测已经实现全天候实时动态化,传统的大坝变形预测方法不能很好地对海量的监测数据进行处理。深度学习是在神经网络的基础上对网络层数加深的优化算法,目前已经在风电、空气质量、灾害预警等领域广泛应用。相对于传统的机器学习算法,深度学习强调从海量数据中进行学习,能够解决大坝变形数据中存在的高维、冗杂以及高噪等传统机器学习算法难以处理的问题。因此,非常有必要开展基于深度学习
随着互联网技术的发展,信息技术时代逐渐过渡到数据技术时代,数据在人们的生活中充当着越来越重要的角色。面对无所不在的数据,如何从当中获取到所需的信息变得十分困难了,这就是所谓的“信息超载”问题。传统的推荐系统在一定程度上缓解了这个问题,通过分析用户的历史行为,从海量的数据中分析出用户的偏好,并把具有用户偏好的物品推荐给用户。然而在实际应用中存在数据稀疏、冷启动等问题,它会导致推荐系统准确率低、推荐单
近年来,人工智能已成为了人们生活密不可分的一部分。随着科技的不断发展与进步,计算性能的不断提高,深度学习的发展更是迅速,而生成对抗网络作为深度学习的重要组成部分,在计算机视觉领域取得了众多成就。同时,在物质生活得到满足的当今社会,越来越多的人对动漫领域产生浓厚的兴趣,而生成对抗网络在动漫领域的应用也得到了更多人的关注,如人物图像的动漫风格迁移以及动漫头像的生成等。但是在动漫头像生成方面,仍然存在两
杨梅是浙江省重要的农果经济作物,稳居果树产值第一。然而由于杨梅树大多种植在山地丘陵地区且种植分散,致使果树种植与管理耗费大量的人力物力,因此采取自动化的方法提取杨梅树株数,实现大规模、分散果园的高效管理。但是使用卫星遥感图像提取果树往往面临方法流程繁琐、人力成本高、耗时长等问题。随着计算机软硬件的发展,基于深度神经网络的目标识别方法逐渐应用于农业、交通、医疗等行业。本文提出应用深度神经网络YOLO
目标检测是计算机视觉领域的重要研究方向之一,广泛应用于工业生产中。在检测任务中,对于一张输入图片,检测算法通过学习来区分图片的前景和背景,然后从背景中分离出感兴趣的目标物体,进而判断物体所在的具体位置和所属类别。然而由于小物体面积小分辨率低,使得对于小目标的检测精度不能达到理想的效果。针对小目标检测的问题,本文基于SSD(Single Shot Multi Box Detector)模型做出改进,
随着计算能力的提升,计算机视觉相关技术发展迅速。图像合成技术作为重要其中一个重要分支,同样发展迅速。本文深入研究了图像合成相关技术,介绍传统模型和基于深度学习的图像合成模型实现原理,并总结归纳各自的优势和不足。同时以复杂场景图像生成为主要研究对象,介绍了基于不同条件的图像合成方法实现,以及它们在各自领域的应用和已经取得的成果,并重点介绍了它们在实现包含多个前景对象的复杂场景图像生成任务上的优势和不
语义分割是图像理解的关键部分,是一项基础的计算机视觉任务,其广泛应用于自动驾驶、医疗图像分析、智能监控等领域。现有的语义分割方法大多数都是全监督语义分割方法,全监督语义分割方法需要大量的像素级标注来训练语义分割网络,然而获得大量具有像素级标注的图像集需要很大的时间和人力成本。为了降低人力和时间昂贵的成本,研究者们提出弱监督语义分割方法。弱监督语义分割方法仅仅只需要图像类别等弱标签去训练分割网络,所
室内火灾复杂多变,在应对完全未知的复杂室内环境时,传统人工势场法因为自身缺陷很难成功完成路径规划的任务。近年来,深度学习和强化学习在不断的向前发展,用深度强化学习的方法来实现智能体路径规划任务一直是前沿热点研究。传统的人工势场法应用到复杂的、未知的环境时,会因为目标不可达或局部极值点等原因导致寻路失败。而深度强化学习是通过让智能体在不断“犯错”的过程中,学习到相关躲避障碍物以及寻找目标点的策略,最