论文部分内容阅读
中国虽然有丰富的铝土矿,但铝土矿的铝硅比普遍比较低,广泛采用烧结工艺来生产氧化铝。在烧结法氧化铝生产过程中,氧化铝回转窑制粉系统的作用是使用回转窑熟料烧结过程中产生的余热来制备细度和水分合格的煤粉,然后将煤粉供给回转窑熟料烧结使用。在制粉过程中,保证煤粉的细度和水分合格,可以提高煤粉燃烧热效率、降低烧结煤耗;提高制粉出力可以提高制粉效率、降低制粉电耗,因此,在保证系统安全、稳定运行的条件下,将煤粉细度和水分控制在工艺设定范围内,并且使磨机具有尽可能大的出力,对于提高氧化铝的产品质量和生产效率具有重要意义。煤粉细度工艺指标难以在线检测,它与磨机负荷之间具有强非线性,受热风温度、原煤性质、钢球负载等因素影响,难以建立精确数学模型;磨机负荷和磨机出口温度与给煤机转速之间具有强非线性,且受热风温度的影响;同时用于制粉系统的热风温度低且变化频繁,因此难以采用已有的控制方法实现磨机负荷的自动控制和煤粉细度的控制。目前氧化铝回转窑制粉过程处于人工控制状态,当原煤性质和热风温度频繁变化时,操作员难以及时准确地判断运行工况,并对制粉过程进行调整,常常造成煤粉包裹钢球和衬板以及煤粉堵塞磨机的故障发生,导致停磨;煤粉细度指标不合格,且波动较大;制粉能耗高等问题。本文依托《复杂工业过程能耗指标的智能优化控制技术及应用》的国家863计划课题,以实现在保证系统安全、稳定运行的条件下,将煤粉细度、水分稳定控制在工艺要求的范围内,同时尽可能提高磨机出力为控制目标,开展了氧化铝回转窑制粉过程智能控制系统的研究,取得了如下研究成果:提出了由磨机负荷智能设定层和过程控制层两层结构组成的氧化铝回转窑制粉过程智能控制方法;设计和开发了实现上述控制方法的由硬件平台、软件平台和智能控制软件组成的回转窑制粉过程智能控制系统;并在某铝厂制粉车间进行安装、调试、运行,取得了显著的应用效果。本文的主要研究工作如下:1.首先分析了煤粉细度与磨机负荷之间的动态特性以及磨机出口温度和磨机负荷与给煤机转速之间的动态特性;并针对该过程的控制难点和问题,提出了由磨机负荷智能设定层和过程控制层组成的氧化铝回转窑制粉过程智能控制方法。负荷设定层根据煤粉细度控制目标,给出磨机负荷设定值;过程控制层通过磨机负荷控制,调节给煤机转速使磨机负荷跟踪设定层给出的负荷设定值,从而实现煤粉细度工艺指标的控制。(1)提出了由磨机负荷智能预设定模型,基于最小二乘-支持向量机的煤粉细度软测量模型和基于模糊推理的反馈补偿模型组成磨机负荷智能设定方法。负荷预设定模型由预设定主模型和钢球磨损补偿模型组成,根据当前原煤水分、原煤细度、热风温度、以及取样煤粉的细度测定分析值和取样时刻的负荷设定值、原煤水分、原煤细度和热风温度,得到磨机负荷的预设定值;煤粉细度软测量模型根据给煤机转速、热风温度、热风温度、磨机进出口负压和布袋收尘器进出口负压,估计煤粉细度;反馈补偿模型根据煤粉细度软测量估计和煤粉细度目标的偏差,采用模糊推理技术调整负荷设定值。(2)提出了由切换机制、磨机负荷和磨机出口温度协调控制器、磨机负荷PI控制器和过负荷控制器组成的磨机负荷智能切换控制方法。切换机制采用基于规则推理的方法识别当前系统工况。当磨机处于低温工况时,切换到负荷与温度协调控制器,将磨机负荷和磨机出口温度控制在工艺规定的范围内;否则识别磨机负荷工况,在过负荷时采用基于规则推理的过负荷控制器,避免出现煤粉堵塞磨机的故障,在正常负荷采用负荷PI控制器,将磨机负荷控制在由设定层给出的负荷设定值上。2.研制了实现上述智能控制方法的制粉过程智能控制系统,由硬件平台、软件平台和智能控制软件组成。其中硬件平台由PLC控制系统、监控计算机、检测装置、执行机构以及相关网络组成;软件平台采用过程控制组态软件;智能控制软件包括磨机负荷智能设定软件、负荷控制切换软件、过程控制软件和监控软件。3.将上述研制的制粉过程智能控制系统应用到某铝厂制粉车间。长期应用结果表明,采用负荷切换控制方法,在煤粉低温工况时,能够将磨机负荷和出口温度控制在工艺规定的范围内,在正常工况下可以将磨机负荷控制在设定层给出的负荷设定值上,在运行期间内避免了由于煤粉低温、过负荷造成故障停磨。同时采用磨机负荷智能设定方法,在边界条件频繁变化的条件下,可以将煤粉细度控制在工艺设定的范围内,且尽可能提高磨机出力。制粉系统能耗统计结果表明与人工控制相比,制粉单耗降低了4.56%。