【摘 要】
:
脉冲神经网络(Spiking Neural Networks)的发展是对类脑计算的进一步学习和发展。同传统神经网络机制相比较而言,脉冲神经网络会对生物神经元进行仿真,模仿生物神经元的结构,同时在编码方式上融入了时间信息。因此脉冲神经网络同时携带空间和时间信息,可以表达更丰富的概念。目前脉冲神经网络在图像识别,计算机视觉、语音处理等方面有了比较好的算法和简单应用。但是,由于脉冲神经网络的发展历史还比
论文部分内容阅读
脉冲神经网络(Spiking Neural Networks)的发展是对类脑计算的进一步学习和发展。同传统神经网络机制相比较而言,脉冲神经网络会对生物神经元进行仿真,模仿生物神经元的结构,同时在编码方式上融入了时间信息。因此脉冲神经网络同时携带空间和时间信息,可以表达更丰富的概念。目前脉冲神经网络在图像识别,计算机视觉、语音处理等方面有了比较好的算法和简单应用。但是,由于脉冲神经网络的发展历史还比较短,在理论以及应用方面都需要科研工作者们更多地探索。在脉冲神经网络的发展过程中,有效的算法是研究的重点。相对于传统神经网络具有里程碑性质的卷积神经网络(CNN)与循环神经网络(RNN),脉冲神经网络在单层网络算法和深层网络发展方面都需要进一步的尝试。当前,由于缺乏高效准确的学习算法,脉冲神经网络的发展和应用都遇到了重大瓶颈。本文基于现有的经典算法,做了如下创新尝试:1、基于对生物延迟学习机制的理解,对现有经典算法Tempotron进行优化创新。首先,对延迟机制的学习方式进行推导,随后基于延迟机制,提出DWTP算法。实验证明,可对权重和延迟时间两个参数进行调节的DWTP算法,相比于仅仅仅依赖权重调整的Tempotron算法,学习效率提高了30%,有更好的鲁棒性。2、由于Tempotron算法属于单层神经网络二分类算法,即使后续发展过程中逐渐优化出了Multi-Tempotron等算法,对于复杂问题的解决依然具有局限性。因此,多层网络的算法优化是一个创新方向。通过对Spikeprop算法的延迟时间进行动态优化,提出DWSBP算法。实验表明,加入了延迟机制调节的DWSBP算法同样具有更高的学习效率和更强的抵抗噪声的能力,学习效率提高了16%。3、最后,考虑到实际问题中环境的复杂性,对图像的特征提取可以明显提高各种算法的识别效率。因此,将CNN卷积网络作为特征提取的预处理方法,本文提出的DWTP和DWSBP算法作为分类器,组成了一个识别模型。通过实验,发现此模型与已有的脉冲神经网络模式识别模型具有类似效果。
其他文献
随着计算机网络的发展和不断流行,越来越多的网络应用和网络服务在Internet上运转。方便大众的同时,这也给网络攻击者可乘之机。用户对网络依赖性的加大,导致网络设备的大量增加,使得攻击者更为方便地控制足够多的僵尸主机在网络上发动攻击,所以当下面对的网络安全威胁更加棘手。其中比较棘手的攻击就是分布式拒绝攻击(DDoS),这种攻击的攻击形式多,危害大,并且难以识别和防御。由于SDN技术的不断发展,结合
随着三维传感技术的极速发展,已经有大量的三维模型出现。如何帮助用户高效使用已有的三维模型,已成为如今亟待解决的问题,三维模型检索方法随之诞生。一方面,现有的基于多视图的三维模型重建算法受LSTM网络时序性的影响,重建结果与输入二维图像的顺序息息相关。另一方面,目前的三维模型检索算法大多基于传统卷积神经网络进行研究的,但是传统的卷积神经网络具有平移不变性,且由于神经元为标量的缘故需要大量的数据进行训
近年来,随着信息通信技术的快速发展和信通网络的大规模部署,新兴网络应用大量涌现。信通网络各层协议和应用在正式部署于实际系统之前须经过严格的测试。因而,构建逼真度高、成本可控且灵活可扩展的测试网络对于网络研究具有重要意义。现代信通网络结构复杂、构建成本巨大,若所有测试网络均采用实际物理设备搭建,将耗费极大的人力和物力。为降低构建大规模测试网络的成本,提升测试网络灵活性和可扩展性,可采用虚拟节点构建测
随着语言模型建模能力的增强,使用机器生成流畅的句子或片段已经不再困难,然而当长度增加时,生成文本往往难以保持原有的高质量,开始出现严重的不一致和退化问题。究其根本原因,一是由于语言模型对自然文本的建模存在偏差,无法保证预测的概率分布总是符合上下文语境,导致生成的词语与前文不一致或不相关。二是解码算法没有对语言模型的偏差合理规避,使得不一致或不相关问题随长度增加而逐渐累积,最终偏离了原有质量。基于以
在获取数字图像时,图像被噪声污染是一个很难避免的问题。图像去噪是许多其他图像工作的基础,如图像分割,边缘提取,图像识别等,都需要首先经过图像去噪,去除干扰信息。图像去噪会很大程度上影响后续工作的效果,因此对图像进行去噪是非常必要的。近年来,因为深度学习的快速发展以及卷积神经网络(CNN)在图像识别等领域取得了很大的成功,人们开始尝试在图像去噪领域研究基于深度学习的方法。最近的研究中,在高斯白噪声领
随着日益复杂的电磁频谱环境带来的严峻的干扰问题,干扰处理技术越来越受到重视。机器学习作为当下的潮流之一,正带动着通信抗干扰技术向智能化方向发展。干扰识别是抗干扰的前提和基础,也是其关键技术之一。将机器学习算法应用到干扰识别技术中,可以使得干扰类型及其相关参数的识别更加准确高效。成功识别出干扰信号之后,利用链路自适应技术,根据不同的信道质量指标对发送功率、调制编码方案及信号波束方向等参数进行实时更改
随着网络技术的飞速发展,无处不在的移动设备和大量的新兴应用导致了移动数据流量的爆炸式增长。内容分发网络(Content Delivery Network,CDN)作为解决网络流量快速增长的重要手段,为了获得更低的延迟和更好的用户体验,不断将其缓存设备从中心网络下沉到边缘网络当中,我们称这样的内容分发网络叫做边缘缓存网络。新的场景带来新的问题,边缘缓存中,通常缓存设备搭载在基站上,这导致了缓存所能够
随着大数据时代的发展,各行各业都呈现出了数字化、信息化的趋势。由于医疗与民生的高度相关性,所以医疗大数据的发展也越发引人关注。然而医疗数据以其多种难以解决的特性往往会对信息化发展产生制约,这些特性包括不完整性、隐私性、多态性等。并且由于医疗数据是在实际的临床工作中获得的,病人往往会在得病之后才去就医,所以医院得到的各种病症的数据比例必然与对应病症的发病率相关,这会导致医疗数据出现不平衡的情况,从而
近些年实例分割任务越来越多的受到研究者们的关注与研究,但目前为止该任务依然没有达到令人满意的效果,其中大部分算法都无法达到实时性的要求,即使达到实时性的算法也很难具有较高的准确度。为了在工程中使用具有实时性的实例分割算法,本论文在YOLACT算法的基础上进行了相关改进,并在保证实时性的同时进一步提高算法准确度。然后在实例分割算法的基础上进一步研究了行人属性识别算法,并通过实例分割方法解决行人属性识
随着社会与网络的不断发展与进步,自然语言处理领域的各项技术如机器翻译、文本匹配与文本分类等也积极地应用在了现实生活中,并取得了良好的效果。互联网的发展,使自然语言处理领域逐步面对更加现实的数据:这些数据存在大量噪声;数据中的每个样本可能被多个子标签的组合所标记;数据中各种类别之间的样本数量不均衡。而当今社会的发展,正需求对网络文本与网络舆情的监管,那么能够处理这种不规则、复杂数据的方法是十分必要的