【摘 要】
:
水凝胶是由亲水性聚合物链相互交联形成的三维网络,它能够吸收和保留大量的水,并且具有在分子水平和纳米水平输送物质的能力,同时还能够保持类似固体的性质,因此在生物医学领域中能够作为一种支架材料应用于药物传递、组织工程和伤口愈合等方面。然而,近年来,随着人们对于人体组织与细胞的深入研究,对于水凝胶在再生医学与组织工程领域的应用也提出了更高的要求。颗粒水凝胶是一种由许多微米级水凝胶堆积而成,具有微米级孔隙
论文部分内容阅读
水凝胶是由亲水性聚合物链相互交联形成的三维网络,它能够吸收和保留大量的水,并且具有在分子水平和纳米水平输送物质的能力,同时还能够保持类似固体的性质,因此在生物医学领域中能够作为一种支架材料应用于药物传递、组织工程和伤口愈合等方面。然而,近年来,随着人们对于人体组织与细胞的深入研究,对于水凝胶在再生医学与组织工程领域的应用也提出了更高的要求。颗粒水凝胶是一种由许多微米级水凝胶堆积而成,具有微米级孔隙网络的新型水凝胶。比起块状水凝胶,颗粒水凝胶具有良好的可注射性、便于调节的微米级孔隙以及独特的模块化性质,所以与块状水凝胶相比,颗粒水凝胶能够更加精确地对细胞或者组织进行调控,也更适用于作为一个多功能生物材料去解决生物医学方面的复杂问题。鉴于颗粒水凝胶在生物医学领域的巨大潜力,本文拟制备一种生物相容性良好的颗粒水凝胶,并对其在再生医学与组织工程方面的应用进行了初步探究。主要开展了以下两个工作:一、颗粒水凝胶的制备及其表征本工作分别采用了生物相容性良好的高分子材料聚乙二醇二丙烯酸酯(PEGDA)与甲基丙烯酸化的丝素蛋白(Sil-MA)通过微乳化(油包水原理)的方法制备成微米级的球形水凝胶(以下简称“微球”),并用巯基化的透明质酸(HA-SH)作为微球之间交联的交联剂,通过光自由基聚合反应使微球紧密地堆积在一起,形成颗粒水凝胶。之后我们对该水凝胶的内部结构和性能进行了探究,通过实验验证了该水凝胶具有一定的可注射性、微米级大小的孔隙,稳定的力学性能、比块状水凝胶更好的吸水性以及颗粒水凝胶能够成为多功能复合型材料的关键因素-模块化性质。凭借这些优良的性能特征,我们有理由相信颗粒水凝胶比起传统水凝胶在生物医学领域的应用具有更大的优势。二、可捕获干细胞的颗粒水凝胶设计针对目前干细胞疗法中干细胞含量低、存活难等问题,我们对颗粒水凝胶进行功能化修饰,使其成为能够捕获干细胞的生物支架。首先从SD大鼠中提取了骨髓间充质干细胞(BMSCs),并成功地对该细胞进行了三系诱导分化,证明该细胞为BMSCs。在验证了一种能与干细胞结合的适配体APT19S对BMSCs具有较高的亲和力后,我们将APT19S修饰在微球上,进而制备功能化的颗粒水凝胶,并进行了颗粒水凝胶捕获干细胞的初步尝试。结果表明,比起对照组,颗粒水凝胶对BMSCs具有更强的捕获能力。根据上述结果,我们认为生物相容性良好的颗粒水凝胶,在修饰上APT19S后,增强了颗粒水凝胶对于BMSCs的亲和力,并且其相互连通的微米级孔隙适合细胞生长,为招募内源性干细胞提供了一种新的生物支架材料,也为组织修复与再生提供了一种新的选择。
其他文献
沥青作为煤/石油化工的副产物,具有来源广泛、芳烃丰富及碳化收率高等优势,是制备高性能碳材料优异的碳质前驱体。其中,沥青衍生碳纳米纤维(CNFs)具有高的电导率、良好的柔韧性以及高的比表面积等优点,已成为碳材料制备和应用领域的研究焦点。然而,沥青差的溶剂溶解性和宽的分子量分布,导致静电纺丝法制备沥青衍生CNFs一直面临着巨大的挑战。因此,本论文以沥青与聚丙烯腈(PAN)共混物为前驱体,采用静电纺丝法
人字齿轮系统重合度高、轴向力小、承载能力强、传动平稳,是海洋船舶领域、高速轨道交通领域和高速航空航天领域中的重要传动装置。时变啮合刚度是齿轮系统主要的激励,和系统振动和噪声的产生有关。齿顶修形、磨损和裂纹会对人字齿轮的时变啮合刚度与动态性能产生影响。因此,时变啮合刚度的研究是分析人字齿轮动力学特性的基础,对识别齿轮系统失效有重要的意义。本文基于势能法,计算含磨损和裂纹的齿顶修形斜齿轮啮合刚度,分析
近年来由于国家大力发展新能源汽车产业,我国在电动汽车领域取得了巨大的成功。动力电池是电动汽车的动力来源,也是电动汽车中最核心的部分,电动汽车的发展离不开电池技术的发展。动力电池目前存在的可靠性、安全性方面的技术问题是限制电动汽车发展的一大瓶颈,尤其是动力电池的热管理系统。如果没有高效的热管理系统,电池续航里程会逐渐下降、电池的全生命周期会极大的缩减,电池运行过程中发热严重时甚至可能引发热失控,进而
在当今社会,人们对永磁同步电机的应用已经不局限于低速的情况了,高速永磁同步电机的转速每小时可达几十万到几百万转,大大的提高了运行效率。因此应用也更加普遍,例如鼓风机、燃气轮机、压缩机、飞轮储能等。高速永磁同步电机往往有许多优势,其中包括具有较高的运行速度,较低的转动惯量,较快的应答速度等。高速永磁同步电机的控制相当于对电机转矩进行控制,转矩控制的核心又是对定子电流进行控制。本文准备通过对q轴的电流
在传热学领域,根据已知的测量点信息和其他已知条件求解传热系统内未知条件的问题都属于传热学反问题。传热学反问题在实际工程中应用广泛,如生物,纺织,无损探伤等领域。传热学反问题的解决方法主要有梯度法和非梯度法,其中梯度法计算量较小,但不具有全局搜索能力,且由于传热学反问题具有不适定性,测量信息的输入误差会在梯度法的求解过程中被放大从而影响反演精度。非梯度法包括进化算法,萤火虫算法等启发式算法,这类方法
自复位钢框架作为可恢复功能结构的一种,实现了比“小震不坏,中震可修,大震不倒”更高要求的抗震设防目标,因此受到了学者的广泛关注。自复位钢框架体系的工作原理是将地震作用下结构的主要变形集中在自复位构件上,从而保证结构中其余关键构件的变形处于弹性阶段。目前,关于自复位钢框架体系的抗震性能研究大部分是基于结构中仅存在自复位构件发展塑性的假定,即结构的变形完全遵循双折线旗形滞回模型。但是有研究表明,由于地
随着制造环境的动态变化和客户需求的多样化,大多数企业难以利用自己有限的资源和能力来满足客户复杂的需求。在这种情况下,越来越多的制造企业将各自的优势整合在一起,相互合作并共享制造资源(包括设备资源,设计资源,数据资源和计算资源),各种制造资源和功能被封装为制造服务,然后使用面向服务的体系结构和Web服务技术在云服务平台上注册和发布,并允许客户选择制造服务,以此来增强其市场竞争力,从而在制造环境中出现
卷积神经网络在计算机视觉领域具有重要地位,随着不断发展和应用,其性能也在逐渐提升。然而,网络的层数、参数量和计算量也在显著增加,这阻碍了卷积神经网络在资源有限的智能手机、可穿戴智能设备等移动端的应用。为了解决这些问题,研究者们提出了众多方案,在最小化网络性能损失的前提下,对卷积神经网络中不重要的部分进行有效识别和剔除,以达到压缩模型和加速计算的目的。网络剪枝是对卷积神经网络压缩和加速的有效途径,它
近年来新能源快速发展,但风力、光伏等能源具有随机性,为充分消纳新能源,发挥柔性负荷的重要作用,分时电价可在不同的时间尺度上调动柔性负荷参与需求响应。此外,为充分发挥分布式电源的效益,微网的概念被提出,独立微网的经济调度由此成为重要课题。基于此,本文的主要研究工作与创新点如下:(1)就分时电价的制定脱离电力商品本身生产运营成本问题,建立基于供电成本的峰谷时段划分及分时电价数学模型。首先,以供电参数为
交通与发展的关系一直是城市规划者与政策制定者所关注的重点内容。智能交通运载系统随着信息技术的发展不断进步,提高了城市中交通运输设施的利用率,为城市居民提供了实时的路径规划,引导了智能驾驶方式,有效的反馈并预计了交通状况,对具体的交通需求给出了可行的参考策略。城市私家车辆的出行往往与驾驶目的具有相关性,城市私家车辆的停等时间一定程度上能反映私家车辆的驾驶目的,提前获知城市私家车辆的停等时间有效提高各