论文部分内容阅读
随着集成电路的发展和制造工艺的进步,半导体器件特征尺寸急剧减小至超深亚微米甚至纳米尺度。尺寸缩小带来了低功耗、高速度等优点,满足了卫星对于高性能及小型、轻便化的迫切要求,使其受到军事、航天等领域的广泛青睐。然而,尺寸缩小除了引发热载流子、负偏置温度不稳定性等可靠性问题之外,也使得超深亚微米器件部分特性对空间辐射更加敏感(如STI漏电效应、单粒子效应等)。因此为了保证应用在空间飞行器、特别是长寿命飞行器中的超深亚微米器件的可靠性,有必要对超深亚微米器件的辐射效应,以及在空间辐射这个特殊环境下热载流子等可靠性问题有可能发生的新的变化特性和规律等,进行进一步深入研究。
本文对超深亚微米器件总剂量辐射效应的研究,遵循由普遍性到特殊性、由共性到个性的研究思路,首先对国内超深亚微米器件总剂量辐射响应规律及损伤机理进行了研究,在获得超深亚微米器件普遍性的辐射损伤特性和损伤机制的基础之上,针对超深亚微米器件隔离结构对总剂量辐射响应的特殊性及重要性,开展了STI构成的场氧晶体管的辐射效应试验研究,获得了STI氧化层的辐射响应特性;针对超深亚微米器件在工艺、结构等方面的特殊性,开展了不同工艺及不同尺寸器件辐射响应特殊性研究,初步获得了超深亚微米器件辐射损伤与器件工艺、结构的关系。
有别与以往大多数研究角度,本文对超深亚微米器件可靠性研究立足于空间辐射环境这个新视点上:在较全面考察、了解超深亚微米器件热载流子等基本效应基础之上,重点研究了总剂量辐射环境中超深亚微米器件热载流子等可靠性变化的新特性和新规律,特别是辐射与热载流子的相关性及相互作用。
SOI器件是CMOS器件的一种,超深亚微米SOI器件由于本身具有良好的抗单粒子效应能力,在空间具有更大的应用需求和应用潜力,因此本论文相当一部分研究工作是围绕超深亚微米SOI器件的总剂量辐射效应及其可靠性进行的,并取得了一些重要的研究成果,例如有关SOI器件固有的Kink效应、Humps效应等与总剂量辐射损伤的关系,以及背栅的热载流子效应等,具有新颖性及重要现实意义。
综上所述,本论文从一般体硅器件到SOI器件,从一般辐射损伤效应和机理到不同尺寸、结构辐射响应的特殊性,从电子器件空间普遍存在的总剂量辐射损伤到小尺寸器件特有的热载流子等损伤,从引发可靠性交化的一般常规环境到特殊的总剂量辐射环境等,由普遍性到特殊性、由共性到个性,对星用超深亚微米器件的辐射效应及其可靠性进行了较全面、系统的研究,研究结果对于丰富、发展星用CMOS微纳器件可靠性理论,从而全面、系统、准确地评估应用于空间环境的CMOS微纳器件的抗辐射性能及可靠性,保障航天器的安全、性能及寿命具有重要意义。