论文部分内容阅读
全球卫星导航系统(Global Navigation Satellite System,GNSS)与捷联惯性导航系统(Strapdown Inertial Navigation System,SINS)组合能够在室外环境或卫星信号短暂失锁的条件下提供连续、可靠的导航定位服务。但是针对室内空间或是室内外过渡区域,由于卫星信号长时间被遮挡或严重缺失,此时可靠的定位服务将难以维持。超宽带(Ultra-wideband,UWB)系统以其可提供厘米级的理论测距精度且布设简单的优势,可为室内或室内外无GNSS信号或弱GNSS信号区域提供有效的测距信息,满足该区域的定位需求。本文围绕室内外导航定位应用中相关模型与方法开展研究,以车载实验平台为例,内容涵盖UWB/SINS融合定位模型与方法、GNSS/SINS融合定位模型与方法和UWB/GNSS/SINS融合定位模型与方法三部分。论文的重点研究内容概括如下:(1)在UWB/SINS融合定位中,UWB基站坐标通常是通过事先测量确定,其不可避免的与理论真值存在一定的偏差。因此针对UWB/SINS融合的问题,给出了动态EIV(Errors-in-Variables)模型,将UWB基站坐标误差纳入观测方程加以考虑;推导了处理动态EIV模型的总体卡尔曼滤波方法;给出了总体卡尔曼滤波方法的状态量验后估值与真值的理论偏差公式,分析了UWB基站坐标误差对状态量验后估值的影响。结果表明:实际应用中考虑UWB基准站坐标的误差并不一定就能提高UWB/SINS融合定位的精度,其受到UWB基站网形布设范围、基站布设精度及惯导器件水平的综合影响;就推导的总体卡尔曼滤波方法而言,室内无人车应用实验验证了提出方法的有效性。(2)针对UWB/SINS融合模型通常为非线性的情况,给出了非线性动态EIV模型的表达形式,并采用Gauss-Newton法推导了针对非线性动态EIV模型的广义总体卡尔曼滤波方法;分析了采用该方法的计算复杂度。结果表明:广义总体卡尔曼滤波方法能够处理非线性情况下的动态EIV模型,其计算复杂度略高于扩展卡尔曼滤波方法的计算复杂度。(3)在非线性动态EIV模型的基础上,进一步推导了无须求Jacobi矩阵的无迹总体卡尔曼滤波方法。由于采用该方法需要生成大量的采样点(sigma点),对各sigma点进行非线性变换增大了运算量,提出采用如下两种方式减小计算量:1)条件线性变换结合边际无迹转换:将原状态空间模型表达成与部分状态量呈非线性相关,而与其余变量呈线性相关的形式,进而根据边际无迹转换,仅针对非线性相关的状态量生成对应的sigma点,减少了sigma点的个数;2)并行运算处理:将sigma点同时分配给多个CPU内核以并行处理的方式进行sigma点的非线性变换,根据计算机CPU实际可用核的个数成倍减少运行时间,达到实时解算的目的。(4)室外环境下GNSS/SINS组合导航应用中,由于路况的影响以及惯性器件并未与载体很好的固连等原因,当载体发生颠簸时,惯导的陀螺和加速度计实际输出值容易出现跳变的现象,从而影响连续、可靠的模糊度固定结果;提出给GNSS/SINS组合模型引入位置多项式拟合约束,用以辅助模糊度固定。位置多项式拟合约束通过时间窗口内的位置信息和预设的模型阶数预测下一历元的位置,其预测值与历元间的异常运动状态无关。从模型概率和模糊度固定状态综合判断惯导是否存在异常输出,若存在且影响了模糊度固定结果,则触发位置多项式拟合约束用于辅助模糊度固定以及更新GNSS/SINS的状态量验后估值。结果表明:采用该方法能够有效的弥补由于惯导瞬时异常输出而导致的模糊度无法连续固定的问题;发现结合部分模糊度固定策略能取得更好的效果。(5)融合UWB测距信息的GNSS/SINS组合模型将有助于提高定位的可靠性与精度。将UWB测距观测值作为等式约束,并根据实际应用场景挖掘系统的内/外隐含信息,可建立等式与不等式约束的UWB/GNSS/SINS融合定位模型。由于不等式约束信息的存在,通常须借助搜索的方式获得状态量的非显式估计值(无解析解),因而计算效率低且无法对状态量估值进行精度评定。提出将凝聚函数法应用于不等式约束卡尔曼滤波;凝聚函数法可将所有的不等式约束方程转化为一个单一且光滑的非线性等式约束方程,可直接采用拉格朗日乘子法计算状态量的估计值和精度评定工作(有解析解),从而无需采用耗时的搜索方法,更适合实时导航计算。结果表明:采用提出的方法能够获得与搜索方法(以序列二次规划法为例)相近的结果,但计算耗时相较于SQP方法降低了近10倍。该论文有图44幅,表13个,参考文献221篇。